Recently, a new bacterial top rot disease of maize has frequently appeared in many areas of Yunnan Province, China. The pathogen of the disease was identified as Klebsiella pneumoniae (KpC4), which is well known to ...Recently, a new bacterial top rot disease of maize has frequently appeared in many areas of Yunnan Province, China. The pathogen of the disease was identified as Klebsiella pneumoniae (KpC4), which is well known to cause pulmonary and urinary diseases in humans and animals and occasionally exists as a harmless endophyte in plants. To evaluate the viru- lence of the maize pathogen to maize and mice, we inoculated maize and mice with routine inoculation and intraperitoneal injection respectively according to Koch's postulates. The results showed that KpC4 and the clinical strain K. pneumoniae 138 (Kp138) were all highly pathogenic to maize and mice and the strain re-isolated from diseased mice also caused typical top rot symptoms on maize by artificial inoculation. It is highlighting that a seemingly dedicated human/animal pathogen could cause plant disease. This is the first report of K. pneumoniae, an opportunistic pathogen of human/animal, could infect maize and mice. The findings serve as an alert to plant, medical and veterinarian scientists regarding a potentially dangerous bacterial pathogen infecting both plants and animals/humans. The maize plants in the field could serve as a reservoir for K. pneumoniae which might infect animals and probably humans when conditions are favorable. The new findings not only are significant in the developing control strategy for the new disease in Yunnan, but also serve as a starting point for further studies on the mechanism of pathogenesis and epidemiology of K. pneumoniae.展开更多
Objective:Diagnosis of atypical pathogens as an aetiology for community-acquired pneumonia(CAP) in children is a challenge world wide.The aim of this study was to detect the frequency of atypical pathogens as a cause ...Objective:Diagnosis of atypical pathogens as an aetiology for community-acquired pneumonia(CAP) in children is a challenge world wide.The aim of this study was to detect the frequency of atypical pathogens as a cause of community-acquired pneumonia(CAP) in Egyptian children.Methods:From 50 children(with age ranged from 2 months to 12 years) hospitalized for community-acquired pneumonia;respiratory sputum samples were collected by induction or spontaneously.All samples were subjected to conventional cultures and Polymerase Chain Reaction(PCR) technique DNA extraction for identification of Mycoplasma,Chlamydia pneumoniae and Legionella pneumophila.Results;A definite pathogen was identified in 78%of the studied children;30% typical bacteria,8%Candida albicans and atypical bacteria in 40%of the pneumonic children.Chlamydia pneumoniae was isolated from 26%of the children while Mycoplasma pneumoniae was isolated from 14%, whereas Legionella pneumophilla was not isolated at all.Conclusion;Atypical pathogens are evident as a potential aetiology for community-acquired pneumonia in(13.3%) of young and(80%) of older Egyptian children.展开更多
The diagnosis of pathogenic bacteria in severe pneumonia is difficult and the prognosis is poor. Its outcome is closely related to bacterial pathogenicity and the timeliness and pertinence of antibiotic treatment. The...The diagnosis of pathogenic bacteria in severe pneumonia is difficult and the prognosis is poor. Its outcome is closely related to bacterial pathogenicity and the timeliness and pertinence of antibiotic treatment. Therefore, early diagnosis is of great significance to the prognosis of patients. Sputum examination and culture is the gold standard for the diagnosis of pathogens of severe pneumonia. However, due to the long time of bacterial culture, the early use of antibiotics, the change of bacteria species, mixed infection and other problems, the results of bacterial culture in sputum are often false negative. With the continuous application of new molecular biology techniques in clinical detection, the classification of bacteria and microorganisms has deepened from the identification of phenotypic characteristics to the classification of gene characteristics. Sequencing analysis with 16S rDNA sequencing technology has the characteristics of high sequencing flux, large amount of data obtained, short cycle, and can more comprehensively reflect the species composition of microbial community, real species distribution and abundance information. In this paper, 16S rDNA sequencing technology was used to analyze the bacterial population composition in the sputum of severe pneumonia, and to explore a new method of etiological diagnosis.展开更多
<b>Objective:</b> 120 patients with severe pneumonia who were kept in the comprehensive ICU of our hospital in 2018 were selected, and 16s rDNA sequencing was performed to analyze the composition of pathog...<b>Objective:</b> 120 patients with severe pneumonia who were kept in the comprehensive ICU of our hospital in 2018 were selected, and 16s rDNA sequencing was performed to analyze the composition of pathogenic bacteria in the sputum of severe pneumonia. <b>Methods:</b> The sputum samples of patients with severe bacterial pneumonia were collected, and the diversity of pathogens in the samples was analyzed by polymerase chain reaction (PCR) amplification and high-throughput sequencing (16s rDNA PCR-DGGE). <b>Results:</b> Sequence showed that sputum samples contained a relatively large number of species, and there were many species that were not detected by sequencing. The dominant bacteria were <i>Streptococcus, Sphingomonas, Corynebacterium, Denatobacteria, Aquobacteria, Acinetobacteria, Prevotella, Klebsiella, Pseudomonas</i>, etc. <b>Conclusion:</b> Bacteria caused by sputum of severe bacterial pneumonia are complex and diverse, which provides new methods and ideas for individualized treatment of patients with severe pneumonia.展开更多
基金funded by the Maize Production System of Yunnan Province,China(2015KJTX002)
文摘Recently, a new bacterial top rot disease of maize has frequently appeared in many areas of Yunnan Province, China. The pathogen of the disease was identified as Klebsiella pneumoniae (KpC4), which is well known to cause pulmonary and urinary diseases in humans and animals and occasionally exists as a harmless endophyte in plants. To evaluate the viru- lence of the maize pathogen to maize and mice, we inoculated maize and mice with routine inoculation and intraperitoneal injection respectively according to Koch's postulates. The results showed that KpC4 and the clinical strain K. pneumoniae 138 (Kp138) were all highly pathogenic to maize and mice and the strain re-isolated from diseased mice also caused typical top rot symptoms on maize by artificial inoculation. It is highlighting that a seemingly dedicated human/animal pathogen could cause plant disease. This is the first report of K. pneumoniae, an opportunistic pathogen of human/animal, could infect maize and mice. The findings serve as an alert to plant, medical and veterinarian scientists regarding a potentially dangerous bacterial pathogen infecting both plants and animals/humans. The maize plants in the field could serve as a reservoir for K. pneumoniae which might infect animals and probably humans when conditions are favorable. The new findings not only are significant in the developing control strategy for the new disease in Yunnan, but also serve as a starting point for further studies on the mechanism of pathogenesis and epidemiology of K. pneumoniae.
文摘Objective:Diagnosis of atypical pathogens as an aetiology for community-acquired pneumonia(CAP) in children is a challenge world wide.The aim of this study was to detect the frequency of atypical pathogens as a cause of community-acquired pneumonia(CAP) in Egyptian children.Methods:From 50 children(with age ranged from 2 months to 12 years) hospitalized for community-acquired pneumonia;respiratory sputum samples were collected by induction or spontaneously.All samples were subjected to conventional cultures and Polymerase Chain Reaction(PCR) technique DNA extraction for identification of Mycoplasma,Chlamydia pneumoniae and Legionella pneumophila.Results;A definite pathogen was identified in 78%of the studied children;30% typical bacteria,8%Candida albicans and atypical bacteria in 40%of the pneumonic children.Chlamydia pneumoniae was isolated from 26%of the children while Mycoplasma pneumoniae was isolated from 14%, whereas Legionella pneumophilla was not isolated at all.Conclusion;Atypical pathogens are evident as a potential aetiology for community-acquired pneumonia in(13.3%) of young and(80%) of older Egyptian children.
文摘The diagnosis of pathogenic bacteria in severe pneumonia is difficult and the prognosis is poor. Its outcome is closely related to bacterial pathogenicity and the timeliness and pertinence of antibiotic treatment. Therefore, early diagnosis is of great significance to the prognosis of patients. Sputum examination and culture is the gold standard for the diagnosis of pathogens of severe pneumonia. However, due to the long time of bacterial culture, the early use of antibiotics, the change of bacteria species, mixed infection and other problems, the results of bacterial culture in sputum are often false negative. With the continuous application of new molecular biology techniques in clinical detection, the classification of bacteria and microorganisms has deepened from the identification of phenotypic characteristics to the classification of gene characteristics. Sequencing analysis with 16S rDNA sequencing technology has the characteristics of high sequencing flux, large amount of data obtained, short cycle, and can more comprehensively reflect the species composition of microbial community, real species distribution and abundance information. In this paper, 16S rDNA sequencing technology was used to analyze the bacterial population composition in the sputum of severe pneumonia, and to explore a new method of etiological diagnosis.
文摘<b>Objective:</b> 120 patients with severe pneumonia who were kept in the comprehensive ICU of our hospital in 2018 were selected, and 16s rDNA sequencing was performed to analyze the composition of pathogenic bacteria in the sputum of severe pneumonia. <b>Methods:</b> The sputum samples of patients with severe bacterial pneumonia were collected, and the diversity of pathogens in the samples was analyzed by polymerase chain reaction (PCR) amplification and high-throughput sequencing (16s rDNA PCR-DGGE). <b>Results:</b> Sequence showed that sputum samples contained a relatively large number of species, and there were many species that were not detected by sequencing. The dominant bacteria were <i>Streptococcus, Sphingomonas, Corynebacterium, Denatobacteria, Aquobacteria, Acinetobacteria, Prevotella, Klebsiella, Pseudomonas</i>, etc. <b>Conclusion:</b> Bacteria caused by sputum of severe bacterial pneumonia are complex and diverse, which provides new methods and ideas for individualized treatment of patients with severe pneumonia.