期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Effects of Allelochemicals on Root Growth and Pod Yield in Response to Continuous Cropping Obstacle of Peanut
1
作者 Zhaohui Tang Feng Guo +8 位作者 Li Cui Qingkai Li Jialei Zhang Jianguo Wang Sha Yang Jingjing Meng Xinguo Li Ping Liu Shubo Wan 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第1期17-34,共18页
Continuous cropping(CC)obstacle is a major threat in legume crops production;however,the underlying mechanisms concerning the roles allelochemicals play in CC obstacle are poorly understood.The current 2-year study wa... Continuous cropping(CC)obstacle is a major threat in legume crops production;however,the underlying mechanisms concerning the roles allelochemicals play in CC obstacle are poorly understood.The current 2-year study was conducted to investigate the effects of different kinds and concentrations of allelochemicals,p-hydroxybenzoic acid(H),cinnamic acid(C),phthalic acid(P),and their mixtures(M)on peanut root growth and productivity in response to CC obstacle.Treatment with H,C,P,and M significantly decreased the plant height,dry weight of the leaves and stems,number of branches,and length of the lateral stem compared with control.Exogenous application of H,C,P,and M inhibited the peanut root growth as indicated by the decreased root morphological characters.The allelochemicals also induced the cell membrane oxidation even though the antioxidant enzymes activities were significantly increased in peanut roots.Meanwhile,treatment with H,C,P,and M reduced the contents of total soluble sugar and total soluble protein.Analysis of ATPase activity,nitrate reductase activity,and root system activity revealed that the inhibition effects of allelochemicals on peanut roots might be due to the decrease in activities of ATPase and NR,and the inhibition of root system.Consequently,allelochemicals significantly decreased the pod yield of peanut compared with control.Our results demonstrate that allelochemicals play a dominant role in CC obstacle-induced peanut growth inhibition and yield reduction through damaging the root antioxidant system,unbalancing the osmolytes accumulation,and decreasing the activities of root-related enzymes. 展开更多
关键词 PEANUT continuous cropping obstacle root growth pod yield
下载PDF
Use of Unmanned Aerial System (UAS) Phenotyping to Predict Pod and Seed Yield in Organic Peanuts
2
作者 Aurora Manley Waltram Ravelombola +6 位作者 John Cason Brian Bennett Hanh Pham Emi Kimura Caroline Ruhl Waqas Ahmad Madeline Brown 《American Journal of Plant Sciences》 CAS 2023年第3期415-426,共12页
Peanut (Arachis hypogaea L.) is a highly nutritious food that is an excellent source of protein and is associated with increased coronary health, lower risk of type-2 diabetes, lower risk of breast cancer and a health... Peanut (Arachis hypogaea L.) is a highly nutritious food that is an excellent source of protein and is associated with increased coronary health, lower risk of type-2 diabetes, lower risk of breast cancer and a healthy profile of inflammatory biomarkers. The domestic demand for organic peanuts has significantly increased, requiring new breeding efforts to develop peanut varieties adapted to the organic farming system. The use of unmanned aerial system (UAS) has gained scientific attention because of the ability to generate high-throughput phenotypic data. However, it has not been fully investigated for phenotyping agronomic traits of organic peanuts. Peanuts are beneficial for cardio system protection and are widely used. Within the U.S., peanuts are grown in 11 states on roughly 600,000 hectares and averaging 4500 kg/ha. This study’s objective was to test the accuracy of UAS data in the phenotyping pod and seed yield of organic peanuts. UAS data was collected from a field plot with 20 Spanish peanut breeding lines on July 07, 2021 and September 27, 2021. The study was a randomized complete block design (RCBD) with 3 blocks. Twenty-five vegetation indices (VIs) were calculated. The analysis of variance showed significant genotypic effects on all 25 vegetation indices for both flights (p < 0.05). The vegetation index Red edge (RE) from the first flight was the most significantly correlated with both pod (r = 0.44) and seed yield (r = 0.64). These results can be used to further advance organic peanut breeding efforts with high-throughput data collection. 展开更多
关键词 PEANUT Unmanned Aerial System Vegetation Indices PHENOTYPING Pod yield Seed yield
下载PDF
Effect of Lime and Phosphorus on Yield and Yield Components of Groundnut Varieties [Arachis hypogaea L.] on Acidic Soil in Nedjo District, Western Ethiopia
3
作者 Askalu Dessalegn Nigussie Dechassa Lemma Wogi 《Agricultural Sciences》 2023年第12期1653-1674,共22页
Groundnut (Arachis hypogaea L.) is an important cash crop for smallholder farmers in western Ethiopia. However, the yield of the crop is very low mainly because of strong soil acidity and poor soil fertility managemen... Groundnut (Arachis hypogaea L.) is an important cash crop for smallholder farmers in western Ethiopia. However, the yield of the crop is very low mainly because of strong soil acidity and poor soil fertility management. A study conducted to evaluate the effect of lime and mineral phosphorus fertilizer on yield components and yield of groundnut. The treatments consisted of three phosphorus rates (0, 46 and 92 kg P<sub>2</sub>O<sub>5·</sub>ha<sup>-1</sup>), three lime rates (0, 6, and 11 ton lime·ha<sup>-1</sup>), and three groundnut varieties (local cultivar, Werer-961, and Werer-963) was laid-out as a randomized complete design in a factorial arrangement with three replications. The corresponding rates of phosphorus applied per pot of soil (7 kg) amounted to 0, 107 and 215 mg kg·soil<sup>-1</sup> and those of lime amounted to 0, 14, and 26 g kg·soil<sup>-1</sup>. The analysis of variance showed that phenological characters, yield, and yield components significantly affected by interaction of variety, phosphorus, and lime. The highest dry pod yield produced by Werer-963 (2 kg dry pod yield·pot<sup>-1</sup>) in response to the application 11 t·ha<sup>-1</sup> lime and 46 kg P<sub>2</sub>O<sub>5</sub>·ha<sup>-1</sup>. However, Werer-961 produced medium (1.5 kg dry pod yield·pot<sup>-1</sup>) at 11 t·ha<sup>-1</sup> lime and 92 kg P<sub>2</sub>O<sub>5</sub>·ha<sup>-1</sup> and the local cultivar produced minimum (1 kg dry pod yield·pot<sup>-1</sup>) at the application of 11 t·ha<sup>-1</sup> lime and 92 kg P<sub>2</sub>O<sub>5</sub>·ha<sup>-1</sup>. In terms of phosphorus yield efficiency index, Werer-963 was highly efficient (index of 1.71), and Werer-961 was moderately efficient (index of 0.6). However, the local cultivar was inefficient (index of 0.04). It is at, in acidic soil of the study area Werer-963 is the best to be cultivated with application of lime 11 t·ha<sup>-1</sup> and 46 kg P<sub>2</sub>O<sub>5</sub>·ha<sup>-1</sup> fertilizer, followed by Werer-961. The results of this pot experiment have revealed that farmers in the study area need to switch to cultivating the improved varieties of groundnut rather than local variety with the application of high rates of lime and moderate amounts of phosphorus. 展开更多
关键词 Dry Biomass yield Dry Pod yield Harvest Index yield Efficiency Index Hundred Seed Weight
下载PDF
Peanut yield,nutrient uptake and nutrient requirements in different regions of China 被引量:3
4
作者 ZHAO Shi-cheng LÜJi-long +5 位作者 XU Xin-peng LIN Xiao-mao Luiz Moro ROSSO QIU Shao-jun Ignacio CIAMPITTI HE Ping 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第9期2502-2511,共10页
Nutrient balance is essential for attaining high yield and improving profits in agricultural farming systems,and crop nutrient uptake ratio and stoichiometry can indicate crop nutrient limitations in the field.We coll... Nutrient balance is essential for attaining high yield and improving profits in agricultural farming systems,and crop nutrient uptake ratio and stoichiometry can indicate crop nutrient limitations in the field.We collected a large amount of field data to study the variations in yield,nutrient uptake and nutrient stoichiometry of peanut(Arachis hypogaea L.)in Southeast China(SEC),North-central China(NCC),and Northeast China(NEC),during 1993 to 2018.Peanut pod yield gradually increased from 1993 to 2018,with average yields of 4148,5138,and 4635 kg ha–1 in SEC,NCC,and NEC,respectively.The nitrogen(N)internal efficiency(NIE,yield to N uptake ratio)was similar among the three regions,but phosphorus(P)IE(PIE,yield to P uptake ratio)changed from low to high among regions:NCC<SEC<NEC,while potassium(K)IE(KIE,yield to K uptake ratio)portrayed a different pattern of SEC<NCC<NEC.Based on the nutrient IE,to produce 1 Mg of pod yield,the average N,P,and K requirements of the above-ground parts of peanut were roughly 47.2,5.1,and 25.5 kg in SEC,44.8,5.7,and 20.6 kg in NCC,and 44.6,4.4,and 14.7 kg in NEC,respectively.The N/P ratio changed in the sequence NCC<SEC<NEC,and the N/K ratio was similar in NEC and NCC,but lower in SEC.The N harvest index(HI)and KHI declined with increasing nutrient uptake across all regions under high nutrient uptake.The low PIE and N/P ratios in NCC could be explained by the high P accumulation in stover,and high KIE and N/K ratios in NEC may be attributed to the low soil K supply.The frontier analysis approach provides a practical framework and allows documentation of a decline in nutrient HI as nutrient uptake increases.Lastly,this study reveals the limitation and surplus of nutrients of peanut in different regions of China. 展开更多
关键词 PEANUT pod yield nutrient internal efficiency nutrient stoichiometry harvest index
下载PDF
Enhancing the Productivity and Sustainability of Bambara Groundnut (Vigna subterranea (L.) Verdc.) Production Using Inorganic Phosphorus Fertilizer
5
作者 Kennedy Agyeman Joseph Nketiah Berchie +9 位作者 Eric Owusu Danquah Sylvester Addy Agbesi Kwadzo Keteku Paul Marno Elvis Agyei Obeng Joseph Adomako Patrick Atta Poku Snr Joseph Addo-Sarkodie Bernard Sakyiamah Michael Odenkey Quaye 《Agricultural Sciences》 CAS 2022年第10期1117-1135,共19页
Phosphorus (P) is a vital element required for nodulation, stomatal regulation and photosynthesis in legume crops. P-deficiency in tropical soils limits the growth and productivity of Bambara groundnuts. The current s... Phosphorus (P) is a vital element required for nodulation, stomatal regulation and photosynthesis in legume crops. P-deficiency in tropical soils limits the growth and productivity of Bambara groundnuts. The current study focused on determining the potential suitability of underutilized crops for food security using phosphorus fertilizer as soil amendment practice. A field trial was carried out at the Council for Scientific and Industrial Research—Crops Research Institute (CSIR-CRI), over two growing seasons to determine the optimum P rate for Bambara production. This trial was laid out in a split plot in a randomized block design with three replications. Bambara genotypes represented the main plots while four P fertilizer rates (0, 30, 45 and 60 kg P<sub>2</sub>O<sub>5</sub> ha<sup>-1</sup>) were the sub-plots. The appropriate application rate of 60 kg P<sub>2</sub>O<sub>5</sub> ha<sup>-1</sup> showed excellent performance based on growth and yield analysis, and the results indicate a positive significant interaction between landraces and phosphorus fertilizer rates. The biological suitability of 60 kg P<sub>2</sub>O<sub>5</sub> ha<sup>-1</sup> increased the number of nodules per plant for Tiga Necuru, Kenya Capstone and Nav Red by 42.8%, 51.3% and 42.1% respectively, over control plots. The same for pod yield is 12%, 28% and 52% significantly higher than when P was applied at 45, 30 and 0 kg P<sub>2</sub>O<sub>5</sub> ha<sup>-1</sup> respectively. The results further revealed that on days to flowering and maturity, the plant height, the number of branches and dry matter increased significantly at each level of P fertilizer rate applied. Bambara production at 0 kg P fertilizer rate might not be sufficient to enhance Bambara productivity significantly. The outcome of this study reveals the suitability of phosphorus fertilizer application in enhancing the sustainability of Bambara groundnut productivity and the potential of Bambara in diversifying crop production to ensure food security. 展开更多
关键词 Bambara Groundnut PHOSPHORUS GENOTYPES Pod yield
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部