In this paper,we study the notion of McCoy ring over the class of non-commutative rings of polynomial type known as skew Poincare–Birkhoff–Witt extensions.As a consequence,we generalize several results about this no...In this paper,we study the notion of McCoy ring over the class of non-commutative rings of polynomial type known as skew Poincare–Birkhoff–Witt extensions.As a consequence,we generalize several results about this notion considered in the literature for commutative rings and Ore extensions.展开更多
This paper deals with the existence and multiplicity of periodic solutions of Duffing equations x + g(x) = p(t). The author proves an infinity of periodic solutions to the periodically forced nonlinear Duffing equatio...This paper deals with the existence and multiplicity of periodic solutions of Duffing equations x + g(x) = p(t). The author proves an infinity of periodic solutions to the periodically forced nonlinear Duffing equations provided that g(x) satisfies the globally lipschitzian condition and the time-mapping satisfies the weaker oscillating property.展开更多
基金Research is supported by Grant HERMES CODE 30366Departamento de Matemati-cas,Facultad de Ciencias,Universidad Nacional de Colombia,Sede Bogota.
文摘In this paper,we study the notion of McCoy ring over the class of non-commutative rings of polynomial type known as skew Poincare–Birkhoff–Witt extensions.As a consequence,we generalize several results about this notion considered in the literature for commutative rings and Ore extensions.
文摘This paper deals with the existence and multiplicity of periodic solutions of Duffing equations x + g(x) = p(t). The author proves an infinity of periodic solutions to the periodically forced nonlinear Duffing equations provided that g(x) satisfies the globally lipschitzian condition and the time-mapping satisfies the weaker oscillating property.