The existence and its movement rule of crystalline structure defect are closely related to the diffusion, solid phase reaction, sintering, phase transformation as well as the physical and chemical properties of materi...The existence and its movement rule of crystalline structure defect are closely related to the diffusion, solid phase reaction, sintering, phase transformation as well as the physical and chemical properties of materials. Point defect theory has been widely applied in material mineralization research, unfavorable transformation controlling, material modification, the research and development of new materials and so on. Point defect theory is one of the important theories for new material research and development. Herein we mainly discuss the application of point defect theory in some structural material researches.展开更多
Photoluminescence (PL) measurement is used to study the point defect distribution in a GaN terahertz Gunn diode, which is able to the degrade high-field transport characteristic during further device operation. PL, ...Photoluminescence (PL) measurement is used to study the point defect distribution in a GaN terahertz Gunn diode, which is able to the degrade high-field transport characteristic during further device operation. PL, secondary ion mass spectroscopy (SIMS), transmission electron microscope (TEM), and capacitance-voltage (C-V) measurements are used to discuss the origin of point defects responsible for the yellow luminescence in structures. The point defect densities of about 1011 cm-2 in structures are extracted by analysis of C-V characterization. After thermal annealing treatment, diminishments of point defect densities in structures are efficiently demonstrated by PL and C-V results.展开更多
The article proves unsingleness of solution for the known elastic equilibrium equation for point defect. Another linear-independent solution. meeting the same boundary conditions as the classical one, has been found.
The formation energies and the equilibrium concentration of vacancies, interstitial H, K, P, O and antisite structural defects with P and K in KH2PO4 (KDP) crystals are investigated by ab initio total-energy calcula...The formation energies and the equilibrium concentration of vacancies, interstitial H, K, P, O and antisite structural defects with P and K in KH2PO4 (KDP) crystals are investigated by ab initio total-energy calculations. The formation energy of interstitial H is calculated to be about 2.06 eV and we suggest that it may be the dominant defect in KDP crystal. The formation energy of an O vacancy (5.25 eV) is much higher than that of interstitial O (0.60 eV). Optical absorption centres can be induced by defects of O vacancies, interstitial O and interstitial H. We suggest that these defects may be responsible for the lowering of the damage threshold of the KDP. A K vacancy defect may increase the ionic conductivity and therefore the laser-induced damage threshold decreases.展开更多
Point defect states in two-dimensional phononic crystal of a hollow mercury cylinder in a water host are studied. An improved plane expansion method combined with the supercell technique is used to calculate the band ...Point defect states in two-dimensional phononic crystal of a hollow mercury cylinder in a water host are studied. An improved plane expansion method combined with the supercell technique is used to calculate the band gaps and the pressure distribution at the defect position. The sonic pressure of defect modes shows that the waves are localized at or near the defect. As the filing fraction increases, more defect modes appear in the band gaps.展开更多
The relationship between ions irradiation and the induced microstructures(point defects,dislocations,clusters,etc.)could be better analyzed and explained by simulation.The mean field rate theory and cluster dynamics a...The relationship between ions irradiation and the induced microstructures(point defects,dislocations,clusters,etc.)could be better analyzed and explained by simulation.The mean field rate theory and cluster dynamics are used to simulate the effect of implanted Fe on the point defects concentration quantitatively.It is found that the depth distribution of point defect concentration is relatively gentle than that of damage calculated by SRIM software.Specifically,the damage rate and point defect concentration increase by 1.5 times and 0.6 times from depth of 120 nm to 825 nm,respectively.With the consideration of implanted Fe ions,which effectively act as interstitial atoms at the depth of high ion implantation rate,the vacancy concentration Cv decreases significantly after reaching the peak value,while the interstitial atom concentration Ci increases significantly after decline of the previous stage.At the peak depth of ion implantation,Cv dropped by 86%,and Ci increased by 6.2 times.Therefore,the implanted ions should be considered into the point defects concentration under high dose of heavy ion irradiation,which may help predict the concentration distribution of defect clusters,further analyzing the evolution behavior of solute precipitation.展开更多
Ferroelectric materials have enormous potential applications in advanced techniques. However, there are still many problems in its practical application. Dielectric and mechanical (internal friction) measurements are ...Ferroelectric materials have enormous potential applications in advanced techniques. However, there are still many problems in its practical application. Dielectric and mechanical (internal friction) measurements are very sensitive to phase transitions, relaxation process of point defects, domain walls and their mobility, which have severe effect on ferroelectric properties. These make them become very good means to investigate substantial information on structural features and to explore the fundamental principles in ferroelectric materials and their applications. In this paper, the dielectric and internal friction measurement were used to investigate the behaviors for point defects and phase transition in ferroelectric ceramics such as Bi_ 4-x La_ x Ti_ 3 O_ 12 , Bi_ 4 Ti_ 3-y Nb_ y O_ 12 , SrBi_ 2 Ti_ 2 O_ 9 , PbZr_ x Ti_ 1-x O_ 3 ,_ PMN-PT. They were used to clarify the mechanism for some ferroelectric behaviors.展开更多
When the GaAs/AlGaAs superlattice-based devices are used under irradiation environments, point defects may be created and ultimately deteriorate their electronic and transport properties. Thus, understanding the prope...When the GaAs/AlGaAs superlattice-based devices are used under irradiation environments, point defects may be created and ultimately deteriorate their electronic and transport properties. Thus, understanding the properties of point defects like vacancies and interstitials is essential for the successful application of semiconductor materials. In the present study, first-principles calculations are carried out to explore the stability of point defects in GaAs/Al_(0.5)Ga_(0.5)As superlattice and their effects on electronic properties. The results show that the interstitial defects and Frenkel pair defects are relatively difficult to form, while the antisite defects are favorably created generally. Besides, the existence of point defects generally modifies the electronic structure of GaAs/Al_(0.5)Ga_(0.5)As superlattice significantly, and most of the defective SL structures possess metallic characteristics. Considering the stability of point defects and carrier mobility of defective states,we propose an effective strategy that AlAs, GaAs, and AlGaantisite defects are introduced to improve the hole or electron mobility of GaAs/Al_(0.5)Ga_(0.5)As superlattice. The obtained results will contribute to the understanding of the radiation damage effects of the GaAs/AlGaAs superlattice, and provide a guidance for designing highly stable and durable semiconductor superlattice-based electronics and optoelectronics for extreme environment applications.展开更多
Using the first-principles method, we investigate the thermal stability of cation point defects in LaAlO3 bulk and films. The calculated densities of states indicate that cation vacancies and antisites act as acceptor...Using the first-principles method, we investigate the thermal stability of cation point defects in LaAlO3 bulk and films. The calculated densities of states indicate that cation vacancies and antisites act as acceptors. The formation energies show that cation vacancies are energetically favorable in bulk LaAIO3 under O-rich conditions, while the AILa antisites are stable in reducing atmosphere. However, the same behavior does not appear in the case of LaAlO3 films. For LaO-terminated LaAlOa fihns, La or AI vacancies remain energetically favorable under O-rich and O-deficient conditions. For an AlO2-terminated surface, under O-rich condition the La interstitial atom is repelled from the outmost layer after optimization, which releases more stress leading to the decrease of total energy of the system. An AI interstitial atom has a smaller radius so that it can stay in distorted films and becomes more stable under O-deficient conditions, and the Al interstitial atoms can be another possible carrier source contribution to the conductivity of n-type interface under an ultrahigh vacuum. La and Al antisites have similar formation energy regardless of oxygen pressure. The results would be helpful to understand the defect structures of LaAlOa-related materials.展开更多
The metamaterial constructed by Helmholtz resonators (HR) has low-frequency acoustic forbidden bands and possesses negative mass density and effective bulk modulus at particular frequencies. The resonant modes in one-...The metamaterial constructed by Helmholtz resonators (HR) has low-frequency acoustic forbidden bands and possesses negative mass density and effective bulk modulus at particular frequencies. The resonant modes in one-dimensional HR structure with point defect were studied using finite element method (FEM). The results show that the acoustic energy is localized between the resonant HR and the opening in the local-resonant-type gap. There is a high pressure area around the defect resonator at the frequency of defect mode. In the Bragg type gap, the energy mainly distributes in the waveguide with harmonic attenuation due to the multi-scattering. Phase opposition demonstrates the existence of negative dynamic mass density. Local negative parameter is observed in the pass band due to the defect mode. Based on further investigation of the acoustic intensity and phase distributions in the resonators corresponding to two different forbidden bands, only one local resonant mode is verified, which is different from the three-component local resonant phononics. This work will be useful for understanding the mechanisms of acoustic forbidden bands and negative parameters in the HR metamaterial, and of help for designing new functional acoustic devices.展开更多
To reveal the potential aging mechanism for self-irradiation in Pu-Ga alloy,we choose Au-Ag alloy as its substitutional material in terms of its mass density and lattice structure.As a first step for understanding the...To reveal the potential aging mechanism for self-irradiation in Pu-Ga alloy,we choose Au-Ag alloy as its substitutional material in terms of its mass density and lattice structure.As a first step for understanding the microscopic behavior of point defects in Au-Ag alloy,we perform a molecular dynamics(MD)simulation on energetics and diffusion of point defects in Au and Ag metal.Our results indicate that the octahedral self-interstitial atom(SIA)is more stable than the tetrahedral SIA.The stability sequence of point defects for He atom in Au/Ag is:substitutional site>octahedral interstitial site>tetrahedral interstitial site.The He-V cluster(Hen Vm,V denotes vacancy)is the most stable at n=m.For the mono-vacancy diffusion,the MD calculation shows that the first nearest neighbour(1 NN)site is the most favorable site on the basis of the nudged elastic band(NEB)calculation,which is in agreement with previous experimental data.There are two peaks for the second nearest neighbour(2 NN)and the third nearest neighbour(3 NN)diffusion curve in octahedral interstitial site for He atom,indicating that the 2 NN and 3 NN diffusion for octahedral SIA would undergo an intermediate defect structure similar to the 1 NN site.The 3 NN diffusion for the tetrahedral SIA and He atom would undergo an intermediate site in analogy to its initial structure.For diffusion of point defects,the vacancy,SIA,He atom and He-V cluster may have an analogous effect on the diffusion velocity in Ag.展开更多
The importance of point defects in semiconductor and function materials has been studied in detail, but effective means for detecting point defects has notbeen available for a long time. The end of range defects in St...The importance of point defects in semiconductor and function materials has been studied in detail, but effective means for detecting point defects has notbeen available for a long time. The end of range defects in St, produced by 140keVGe+ implantation, were investigated as detectors for measuring the interstitial concentration created by 42 keV B+ implantation. The concentration of interstitial resultingfrom the B+ implantation and the behavior of the interstitial flux under different annealing condition were given. The enhanced diffusion in the boron doped EPI marker,resulting from mobile non-equilibrium interstitials was demonstrated to be transient.Interstitial fluxes arising from processing can be detected by transient enhanced diffusion (TED) of doped marker layers as well.展开更多
Point defect engineering endows catalysts with novel physical and chemical properties,elevating their electrocatalytic efficiency.The introduction of defects emerges as a promising strategy,effectively modifying the e...Point defect engineering endows catalysts with novel physical and chemical properties,elevating their electrocatalytic efficiency.The introduction of defects emerges as a promising strategy,effectively modifying the electronic structure of active sites.This optimization influences the adsorption energy of intermediates,thereby mitigating reaction energy barriers,altering paths,enhancing selectivity,and ultimately improving the catalytic efficiency of electrocatalysts.To elucidate the impact of defects on the electrocatalytic process,we comprehensively outline the roles of various point defects,their synthetic methodologies,and characterization techniques.Importantly,we consolidate insights into the relationship between point defects and catalytic activity for hydrogen/oxygen evolution and CO_(2)/O_(2)/N_(2) reduction reactions by integrating mechanisms from diverse reactions.This underscores the pivotal role of point defects in enhancing catalytic performance.At last,the principal challenges and prospects associated with point defects in current electrocatalysts are proposed,emphasizing their role in advancing the efficiency of electrochemical energy storage and conversion materials.展开更多
We study radial symmetric point defects with degree k/2 in the 2-D disk or R^(2) in the Q-tensor framework with a singular bulk energy,which is defined by Bingham closure.First,we obtain the existence of solutions for...We study radial symmetric point defects with degree k/2 in the 2-D disk or R^(2) in the Q-tensor framework with a singular bulk energy,which is defined by Bingham closure.First,we obtain the existence of solutions for the profiles of radial symmetric point defects with degree k/2 in the 2-D disk or R^(2).Then,we prove that the solution is stable for |k| = 1 and unstable for |k| > 1.Some identities are derived and utilized throughout the proof of existence and stability/instability.展开更多
ABO_(3)perovskites,owning unique properties,have great research prospect in electromagnetic wave absorption field.Normally,doping can significantly regulate the dielectric loss,whereas the magnetic loss can be ignored...ABO_(3)perovskites,owning unique properties,have great research prospect in electromagnetic wave absorption field.Normally,doping can significantly regulate the dielectric loss,whereas the magnetic loss can be ignored.In this work,the crystal structure and electromagnetic properties can be regulated systematically by the K,Fe co-doping for LaCoO_(3)perovskites(LKCFO)under the condition of fixed F content.In addition,the obtained samples show the obvious interfacial polarization effect on accounting to the small size effect,which is conducive to the effective microwave absorption.By analyzing the evolution of the positron annihilation lifetime and the first-principles calculation of the oxygen density of states for the series of LKCFO perovskites,it is found that the charge transport characteristics will be controlled by the point defect generated by allelic doping.The point defect content decreases and then increases as the doping level rises.The prepared perovskite exhibits the lowest defect density and the largest dielectric loss capability,which indicates that the lower point defects promote electron migration and thus enhance the dielectric loss;thus,the electromagnetic wave absorption bandwidth up to 6.2 GHz is reached.In contrast,both insufficient and excessive K doping are detrimental to the enhancement of microwave absorption.Especially,the practical application value was investigated using Computer Simulation Technology(CST)simulations.The LKCFO-2 exhibits the smallest RCS value(below-10 dBm^(2))at almost-90°-90°with a thickness of 2 mm,providing an effective method for study excellent microwave absorption and scattering property.展开更多
The structural features and real compositions with point defects of Bi+-doped TlCdCl_3 and TlCdI_3 single crystals, grown by the Bridgman-Stockbarger technique, are first studied using the X-ray diffraction, X-ray syn...The structural features and real compositions with point defects of Bi+-doped TlCdCl_3 and TlCdI_3 single crystals, grown by the Bridgman-Stockbarger technique, are first studied using the X-ray diffraction, X-ray synchrotron radiation, and EXAFS/XANES spectroscopy. In the structures of Bi^+-doped TlCdCl_3 and TlCdI_3 crystals, the Cd, Cl, and I sites are found to be defect-free. The vacancies in the Tl sites and interstitial Bi atoms located in the vicinity of the Tl sites are detected in the structures of both samples. In the Bi^+-doped TlCdCl_3, the presence of a small amount of Bi^+ ions in the Tl^+ sites is possible. The correlation between photoluminescence bands and point defects in the refined structures are determined. Photoluminescence spectra and decay kinetics of the Bi+-doped TlCdCl_3 and TlCdI_3 demonstrate that they are attractive materials for potential applications in photonics.展开更多
In this study, we report the effect of Zn doping on the thermoelectric properties of CO1-xZnxSbS0.85Se0.15 solid solutions (x = 0, 0.02, 0.05, 0.08). The results show the dimensionless figure of merit (zT) increas...In this study, we report the effect of Zn doping on the thermoelectric properties of CO1-xZnxSbS0.85Se0.15 solid solutions (x = 0, 0.02, 0.05, 0.08). The results show the dimensionless figure of merit (zT) increases from 0.17 to 0.34 at 875 K for Co0.95Zn0.05SbS0.85Se0.15 sample, due to the noticeable decrease in the lattice thermal conductivity by introducing point defect, which is further confirmed by an analysis based on the Debye-Callaway- Klemens model. Meanwhile, the thermoelectric power factor is maintained at high temperatures. This work highlights the important role of point defect in improving the thermoelectric performance of CoSbS-based compounds.展开更多
Photocatalytic reduction of CO_(2) with water by photocatalysts such as TiO_(2) to produce solar fuels is an attractive approach to alleviate the environmental influences of greenhouse gases and in the meantime produc...Photocatalytic reduction of CO_(2) with water by photocatalysts such as TiO_(2) to produce solar fuels is an attractive approach to alleviate the environmental influences of greenhouse gases and in the meantime produce valuable carbon-neutral fuels.Among the materials properties that affect catalytic activity of CO_(2) photoreduction,the point defect on TiO_(2) is one of the most important but not frequently addressed and well understood in the literature.In this review,we have examined the major influences of TiO_(2) point defects on CO_(2)photoreduction with H_(2)O,by changing the catalysts'gas adsorption capabilities,optical properties,and electronic structures.In addition,the performances of various defective TiO_(2) toward CO_(2) photoreduction are summarized and compared in terms of productivity,selectivity,and stability.We hope this review can contribute to understanding the mechanism of CO_(2) photoreduction on defective TiO_(2) and provide insights to the design of highly efficient defect-rich TiO_(2) to boost the CO_(2) utilization.展开更多
基金This work was supported by the "863" program (No. 2003AA322020)
文摘The existence and its movement rule of crystalline structure defect are closely related to the diffusion, solid phase reaction, sintering, phase transformation as well as the physical and chemical properties of materials. Point defect theory has been widely applied in material mineralization research, unfavorable transformation controlling, material modification, the research and development of new materials and so on. Point defect theory is one of the important theories for new material research and development. Herein we mainly discuss the application of point defect theory in some structural material researches.
基金supported by the National Natural Science Foundation of China(Grant Nos.61076079 and 61274092)the Doctoral Program Fund of the Ministry of Education of China(Grant No.20090203110012)the Major Program and State Key Program of the National Natural Science Foundation of China(GrantNo.60890191)
文摘Photoluminescence (PL) measurement is used to study the point defect distribution in a GaN terahertz Gunn diode, which is able to the degrade high-field transport characteristic during further device operation. PL, secondary ion mass spectroscopy (SIMS), transmission electron microscope (TEM), and capacitance-voltage (C-V) measurements are used to discuss the origin of point defects responsible for the yellow luminescence in structures. The point defect densities of about 1011 cm-2 in structures are extracted by analysis of C-V characterization. After thermal annealing treatment, diminishments of point defect densities in structures are efficiently demonstrated by PL and C-V results.
文摘The article proves unsingleness of solution for the known elastic equilibrium equation for point defect. Another linear-independent solution. meeting the same boundary conditions as the classical one, has been found.
基金Project supported by the Program for New Century Excellent Talents at the University of China (Grant No.NCET-08-0722)
文摘The formation energies and the equilibrium concentration of vacancies, interstitial H, K, P, O and antisite structural defects with P and K in KH2PO4 (KDP) crystals are investigated by ab initio total-energy calculations. The formation energy of interstitial H is calculated to be about 2.06 eV and we suggest that it may be the dominant defect in KDP crystal. The formation energy of an O vacancy (5.25 eV) is much higher than that of interstitial O (0.60 eV). Optical absorption centres can be induced by defects of O vacancies, interstitial O and interstitial H. We suggest that these defects may be responsible for the lowering of the damage threshold of the KDP. A K vacancy defect may increase the ionic conductivity and therefore the laser-induced damage threshold decreases.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10864009)the Natural Science Foundation of Yunnan Province,China (Grant No. 2008CD109)the State Key Program of the National Natural Science of China (Grant No. 50734007)
文摘Point defect states in two-dimensional phononic crystal of a hollow mercury cylinder in a water host are studied. An improved plane expansion method combined with the supercell technique is used to calculate the band gaps and the pressure distribution at the defect position. The sonic pressure of defect modes shows that the waves are localized at or near the defect. As the filing fraction increases, more defect modes appear in the band gaps.
基金the Special Funds for the Key Research and Development Program of the Ministry of Science and Technology of China(Grant No.2017YFB0702201).
文摘The relationship between ions irradiation and the induced microstructures(point defects,dislocations,clusters,etc.)could be better analyzed and explained by simulation.The mean field rate theory and cluster dynamics are used to simulate the effect of implanted Fe on the point defects concentration quantitatively.It is found that the depth distribution of point defect concentration is relatively gentle than that of damage calculated by SRIM software.Specifically,the damage rate and point defect concentration increase by 1.5 times and 0.6 times from depth of 120 nm to 825 nm,respectively.With the consideration of implanted Fe ions,which effectively act as interstitial atoms at the depth of high ion implantation rate,the vacancy concentration Cv decreases significantly after reaching the peak value,while the interstitial atom concentration Ci increases significantly after decline of the previous stage.At the peak depth of ion implantation,Cv dropped by 86%,and Ci increased by 6.2 times.Therefore,the implanted ions should be considered into the point defects concentration under high dose of heavy ion irradiation,which may help predict the concentration distribution of defect clusters,further analyzing the evolution behavior of solute precipitation.
文摘Ferroelectric materials have enormous potential applications in advanced techniques. However, there are still many problems in its practical application. Dielectric and mechanical (internal friction) measurements are very sensitive to phase transitions, relaxation process of point defects, domain walls and their mobility, which have severe effect on ferroelectric properties. These make them become very good means to investigate substantial information on structural features and to explore the fundamental principles in ferroelectric materials and their applications. In this paper, the dielectric and internal friction measurement were used to investigate the behaviors for point defects and phase transition in ferroelectric ceramics such as Bi_ 4-x La_ x Ti_ 3 O_ 12 , Bi_ 4 Ti_ 3-y Nb_ y O_ 12 , SrBi_ 2 Ti_ 2 O_ 9 , PbZr_ x Ti_ 1-x O_ 3 ,_ PMN-PT. They were used to clarify the mechanism for some ferroelectric behaviors.
基金Project supported by the NSAF Joint Foundation of China (Grant No. U1930120)the Key Natural Science Foundation of Gansu Province, China (Grant No. 20JR5RA211)the National Natural Science Foundation of China (Grant No. 11774044)。
文摘When the GaAs/AlGaAs superlattice-based devices are used under irradiation environments, point defects may be created and ultimately deteriorate their electronic and transport properties. Thus, understanding the properties of point defects like vacancies and interstitials is essential for the successful application of semiconductor materials. In the present study, first-principles calculations are carried out to explore the stability of point defects in GaAs/Al_(0.5)Ga_(0.5)As superlattice and their effects on electronic properties. The results show that the interstitial defects and Frenkel pair defects are relatively difficult to form, while the antisite defects are favorably created generally. Besides, the existence of point defects generally modifies the electronic structure of GaAs/Al_(0.5)Ga_(0.5)As superlattice significantly, and most of the defective SL structures possess metallic characteristics. Considering the stability of point defects and carrier mobility of defective states,we propose an effective strategy that AlAs, GaAs, and AlGaantisite defects are introduced to improve the hole or electron mobility of GaAs/Al_(0.5)Ga_(0.5)As superlattice. The obtained results will contribute to the understanding of the radiation damage effects of the GaAs/AlGaAs superlattice, and provide a guidance for designing highly stable and durable semiconductor superlattice-based electronics and optoelectronics for extreme environment applications.
基金Supported by the Hebei Provincial Young Top-Notch Talent Support Program under Grant No BJRC2016the Innovative Funding Project of Graduates of Hebei University under Grant No hbu2018ss62the Midwest Universities Comprehensive Strength Promotion Project
文摘Using the first-principles method, we investigate the thermal stability of cation point defects in LaAlO3 bulk and films. The calculated densities of states indicate that cation vacancies and antisites act as acceptors. The formation energies show that cation vacancies are energetically favorable in bulk LaAIO3 under O-rich conditions, while the AILa antisites are stable in reducing atmosphere. However, the same behavior does not appear in the case of LaAlO3 films. For LaO-terminated LaAlOa fihns, La or AI vacancies remain energetically favorable under O-rich and O-deficient conditions. For an AlO2-terminated surface, under O-rich condition the La interstitial atom is repelled from the outmost layer after optimization, which releases more stress leading to the decrease of total energy of the system. An AI interstitial atom has a smaller radius so that it can stay in distorted films and becomes more stable under O-deficient conditions, and the Al interstitial atoms can be another possible carrier source contribution to the conductivity of n-type interface under an ultrahigh vacuum. La and Al antisites have similar formation energy regardless of oxygen pressure. The results would be helpful to understand the defect structures of LaAlOa-related materials.
文摘The metamaterial constructed by Helmholtz resonators (HR) has low-frequency acoustic forbidden bands and possesses negative mass density and effective bulk modulus at particular frequencies. The resonant modes in one-dimensional HR structure with point defect were studied using finite element method (FEM). The results show that the acoustic energy is localized between the resonant HR and the opening in the local-resonant-type gap. There is a high pressure area around the defect resonator at the frequency of defect mode. In the Bragg type gap, the energy mainly distributes in the waveguide with harmonic attenuation due to the multi-scattering. Phase opposition demonstrates the existence of negative dynamic mass density. Local negative parameter is observed in the pass band due to the defect mode. Based on further investigation of the acoustic intensity and phase distributions in the resonators corresponding to two different forbidden bands, only one local resonant mode is verified, which is different from the three-component local resonant phononics. This work will be useful for understanding the mechanisms of acoustic forbidden bands and negative parameters in the HR metamaterial, and of help for designing new functional acoustic devices.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51401237,11474358,and 51271198)the Fund from Shaanxi Provincial Education Department,China(Grant No.18JK1207)the Defence Technology Foundation of China(Grant No.2301003)
文摘To reveal the potential aging mechanism for self-irradiation in Pu-Ga alloy,we choose Au-Ag alloy as its substitutional material in terms of its mass density and lattice structure.As a first step for understanding the microscopic behavior of point defects in Au-Ag alloy,we perform a molecular dynamics(MD)simulation on energetics and diffusion of point defects in Au and Ag metal.Our results indicate that the octahedral self-interstitial atom(SIA)is more stable than the tetrahedral SIA.The stability sequence of point defects for He atom in Au/Ag is:substitutional site>octahedral interstitial site>tetrahedral interstitial site.The He-V cluster(Hen Vm,V denotes vacancy)is the most stable at n=m.For the mono-vacancy diffusion,the MD calculation shows that the first nearest neighbour(1 NN)site is the most favorable site on the basis of the nudged elastic band(NEB)calculation,which is in agreement with previous experimental data.There are two peaks for the second nearest neighbour(2 NN)and the third nearest neighbour(3 NN)diffusion curve in octahedral interstitial site for He atom,indicating that the 2 NN and 3 NN diffusion for octahedral SIA would undergo an intermediate defect structure similar to the 1 NN site.The 3 NN diffusion for the tetrahedral SIA and He atom would undergo an intermediate site in analogy to its initial structure.For diffusion of point defects,the vacancy,SIA,He atom and He-V cluster may have an analogous effect on the diffusion velocity in Ag.
文摘The importance of point defects in semiconductor and function materials has been studied in detail, but effective means for detecting point defects has notbeen available for a long time. The end of range defects in St, produced by 140keVGe+ implantation, were investigated as detectors for measuring the interstitial concentration created by 42 keV B+ implantation. The concentration of interstitial resultingfrom the B+ implantation and the behavior of the interstitial flux under different annealing condition were given. The enhanced diffusion in the boron doped EPI marker,resulting from mobile non-equilibrium interstitials was demonstrated to be transient.Interstitial fluxes arising from processing can be detected by transient enhanced diffusion (TED) of doped marker layers as well.
基金supported by the National Natural Science Foundation of China(U21A20281)the Special Fund for Young Teachers from Zhengzhou University(JC23557030,JC23257011)+1 种基金the Key Research Projects of Higher Education Institutions of Henan Province(24A530009)the Project of Zhongyuan Critical Metals Laboratory(GJJSGFYQ202336).
文摘Point defect engineering endows catalysts with novel physical and chemical properties,elevating their electrocatalytic efficiency.The introduction of defects emerges as a promising strategy,effectively modifying the electronic structure of active sites.This optimization influences the adsorption energy of intermediates,thereby mitigating reaction energy barriers,altering paths,enhancing selectivity,and ultimately improving the catalytic efficiency of electrocatalysts.To elucidate the impact of defects on the electrocatalytic process,we comprehensively outline the roles of various point defects,their synthetic methodologies,and characterization techniques.Importantly,we consolidate insights into the relationship between point defects and catalytic activity for hydrogen/oxygen evolution and CO_(2)/O_(2)/N_(2) reduction reactions by integrating mechanisms from diverse reactions.This underscores the pivotal role of point defects in enhancing catalytic performance.At last,the principal challenges and prospects associated with point defects in current electrocatalysts are proposed,emphasizing their role in advancing the efficiency of electrochemical energy storage and conversion materials.
基金supported by the Basque Government through the BERC PRO-GRAMME 2022-2025 and by the Spanish State Research Agency through Basque Center for Applied Mathematics Severo Ochoa excellence accreditation SEV-2017-0718 and through Project PID2020-114189RB-I00 funded by Agencia Estatal de Investigacion(Grant No.PID2020-114189RB-I00/AEI/10.13039/501100011033)supported by National Natural Science Foundation of China(Grant Nos.11931010 and 12271476)。
文摘We study radial symmetric point defects with degree k/2 in the 2-D disk or R^(2) in the Q-tensor framework with a singular bulk energy,which is defined by Bingham closure.First,we obtain the existence of solutions for the profiles of radial symmetric point defects with degree k/2 in the 2-D disk or R^(2).Then,we prove that the solution is stable for |k| = 1 and unstable for |k| > 1.Some identities are derived and utilized throughout the proof of existence and stability/instability.
基金We are thankful for the financial support from the National Nature Science Foundation of China(No.51971111).
文摘ABO_(3)perovskites,owning unique properties,have great research prospect in electromagnetic wave absorption field.Normally,doping can significantly regulate the dielectric loss,whereas the magnetic loss can be ignored.In this work,the crystal structure and electromagnetic properties can be regulated systematically by the K,Fe co-doping for LaCoO_(3)perovskites(LKCFO)under the condition of fixed F content.In addition,the obtained samples show the obvious interfacial polarization effect on accounting to the small size effect,which is conducive to the effective microwave absorption.By analyzing the evolution of the positron annihilation lifetime and the first-principles calculation of the oxygen density of states for the series of LKCFO perovskites,it is found that the charge transport characteristics will be controlled by the point defect generated by allelic doping.The point defect content decreases and then increases as the doping level rises.The prepared perovskite exhibits the lowest defect density and the largest dielectric loss capability,which indicates that the lower point defects promote electron migration and thus enhance the dielectric loss;thus,the electromagnetic wave absorption bandwidth up to 6.2 GHz is reached.In contrast,both insufficient and excessive K doping are detrimental to the enhancement of microwave absorption.Especially,the practical application value was investigated using Computer Simulation Technology(CST)simulations.The LKCFO-2 exhibits the smallest RCS value(below-10 dBm^(2))at almost-90°-90°with a thickness of 2 mm,providing an effective method for study excellent microwave absorption and scattering property.
文摘The structural features and real compositions with point defects of Bi+-doped TlCdCl_3 and TlCdI_3 single crystals, grown by the Bridgman-Stockbarger technique, are first studied using the X-ray diffraction, X-ray synchrotron radiation, and EXAFS/XANES spectroscopy. In the structures of Bi^+-doped TlCdCl_3 and TlCdI_3 crystals, the Cd, Cl, and I sites are found to be defect-free. The vacancies in the Tl sites and interstitial Bi atoms located in the vicinity of the Tl sites are detected in the structures of both samples. In the Bi^+-doped TlCdCl_3, the presence of a small amount of Bi^+ ions in the Tl^+ sites is possible. The correlation between photoluminescence bands and point defects in the refined structures are determined. Photoluminescence spectra and decay kinetics of the Bi+-doped TlCdCl_3 and TlCdI_3 demonstrate that they are attractive materials for potential applications in photonics.
基金financially supported by the National Natural Science Foundation of China (Nos. 11344010. 11404044 and 51472036)the Fundamental Research Funds for the Central Universities (No. 106112016CDJZR308808)
文摘In this study, we report the effect of Zn doping on the thermoelectric properties of CO1-xZnxSbS0.85Se0.15 solid solutions (x = 0, 0.02, 0.05, 0.08). The results show the dimensionless figure of merit (zT) increases from 0.17 to 0.34 at 875 K for Co0.95Zn0.05SbS0.85Se0.15 sample, due to the noticeable decrease in the lattice thermal conductivity by introducing point defect, which is further confirmed by an analysis based on the Debye-Callaway- Klemens model. Meanwhile, the thermoelectric power factor is maintained at high temperatures. This work highlights the important role of point defect in improving the thermoelectric performance of CoSbS-based compounds.
基金The authors acknowledge the financial support from National Science Foundation CAREER Award(CBET#1538404).
文摘Photocatalytic reduction of CO_(2) with water by photocatalysts such as TiO_(2) to produce solar fuels is an attractive approach to alleviate the environmental influences of greenhouse gases and in the meantime produce valuable carbon-neutral fuels.Among the materials properties that affect catalytic activity of CO_(2) photoreduction,the point defect on TiO_(2) is one of the most important but not frequently addressed and well understood in the literature.In this review,we have examined the major influences of TiO_(2) point defects on CO_(2)photoreduction with H_(2)O,by changing the catalysts'gas adsorption capabilities,optical properties,and electronic structures.In addition,the performances of various defective TiO_(2) toward CO_(2) photoreduction are summarized and compared in terms of productivity,selectivity,and stability.We hope this review can contribute to understanding the mechanism of CO_(2) photoreduction on defective TiO_(2) and provide insights to the design of highly efficient defect-rich TiO_(2) to boost the CO_(2) utilization.