Low earth orbit(LEO) satellite communications can provide ubiquitous and reliable services,making it an essential part of the Internet of Everything network. Beam hopping(BH) is an emerging technology for effectively ...Low earth orbit(LEO) satellite communications can provide ubiquitous and reliable services,making it an essential part of the Internet of Everything network. Beam hopping(BH) is an emerging technology for effectively addressing the issue of low resource utilization caused by the non-uniform spatio-temporal distribution of traffic demands. However, how to allocate multi-dimensional resources in a timely and efficient way for the highly dynamic LEO satellite systems remains a challenge. This paper proposes a joint beam scheduling and power optimization beam hopping(JBSPO-BH) algorithm considering the differences in the geographic distribution of sink nodes. The JBSPO-BH algorithm decouples the original problem into two sub-problems. The beam scheduling problem is modelled as a potential game,and the Nash equilibrium(NE) point is obtained as the beam scheduling strategy. Moreover, the penalty function interior point method is applied to optimize the power allocation. Simulation results show that the JBSPO-BH algorithm has low time complexity and fast convergence and achieves better performance both in throughput and fairness. Compared with greedybased BH, greedy-based BH with the power optimization, round-robin BH, Max-SINR BH and satellite resource allocation algorithm, the throughput of the proposed algorithm is improved by 44.99%, 20.79%,156.06%, 15.39% and 8.17%, respectively.展开更多
In this paper,accelerated saddle point dynamics is proposed for distributed resource allocation over a multi-agent network,which enables a hyper-exponential convergence rate.Specifically,an inertial fast-slow dynamica...In this paper,accelerated saddle point dynamics is proposed for distributed resource allocation over a multi-agent network,which enables a hyper-exponential convergence rate.Specifically,an inertial fast-slow dynamical system with vanishing damping is introduced,based on which the distributed saddle point algorithm is designed.The dual variables are updated in two time scales,i.e.,the fast manifold and the slow manifold.In the fast manifold,the consensus of the Lagrangian multipliers and the tracking of the constraints are pursued by the consensus protocol.In the slow manifold,the updating of the Lagrangian multipliers is accelerated by inertial terms.Hyper-exponential stability is defined to characterize a faster convergence of our proposed algorithm in comparison with conventional primal-dual algorithms for distributed resource allocation.The simulation of the application in the energy dispatch problem verifies the result,which demonstrates the fast convergence of the proposed saddle point dynamics.展开更多
The synthesis of geological and petroleum research undertaken in the coastal Sedimentary Basin of the Pointe-Noire region enabled the establishment of a lithostratigraphic scale. It has been observed that the order in...The synthesis of geological and petroleum research undertaken in the coastal Sedimentary Basin of the Pointe-Noire region enabled the establishment of a lithostratigraphic scale. It has been observed that the order in which the series observed in outcrop and those encountered by deep wells succeed each other has allowed a value to be given to this relative scale. The study area corresponds to a longitudinal tectonic accident, fault or flexure. It belongs to the Cretaceous and Tertiary coastal sedimentary basin covered by the Plio-Pleistocene age formations (series of circuses), formed of highly permeable sands comprising multiple resistant horizons that store large bodies of water whose reserves are considered very important. Hydrographic network is composed of four main basins with a mediocre size. The quality of this groundwater is considered to be satisfactory for household consumption, but the sustainable management of these reserves requires constant checks on their quality as well as on the level of the reserves. All these resources put the agglomeration of Pointe-Noire close to large exploitable water reserves that meet the need for drinking water, even if, on the whole, the agglomeration is still experiencing many difficulties in terms of its drinking water supply.展开更多
The System Resource Constraint Theory intends to research growth of economy under different classes of system resource constraint. By analogy between ecology system and economic system, from the angle of total nature ...The System Resource Constraint Theory intends to research growth of economy under different classes of system resource constraint. By analogy between ecology system and economic system, from the angle of total nature resource, total supply ability and total market volume, the theory focuses on the constraint condition and development characteristic of economy as well as the various game characteristics among economies such as independence, competition, and joint competition. According to the math deduction, the author finds that Logistic model is relative with Marthus's model and Zero-growth model.展开更多
Water resource access in the Nouhao sub-basin, assessed based on the availability of drinking water mobilization facilities, the availability of water for uses and the quality of drinking water, revealed that in 2017 ...Water resource access in the Nouhao sub-basin, assessed based on the availability of drinking water mobilization facilities, the availability of water for uses and the quality of drinking water, revealed that in 2017 the basin was covered by 1249 modern water point, main drinking water sources. On average, the sub-basin shows a ratio of 271 users per drinking water point. Communal level shows some disparity with Bittou recording the highest number of people per drinking water point, i.e., around 537. Water that can be captured in the entire sub-basin meets only 42% of the total water needs from the three mains uses: irrigation, domestic consumption and livestock. The highest demander among these uses is Irrigation with 75% of the need, i.e., approximately 12,859,995 m<sup>3</sup>. Water in 33% drinking sources of this sub basin is of poor quality. Arsenic, one of the quality parameters studied, is found in some communes of the sub-basin. 11% of the water points in Bissiga are arsenic polluted making this commune the most arsenic contaminated location. The vulnerability maps deducted from lack of water for uses;lack of drinking water works and poor water quality shows so, the exposure level of the sub-basin’ communes to some potential risks related to low water resources access.展开更多
Traditional analytical approaches for stability assessment of inverter-based resources(IBRs),often requiring detailed knowledge of IBR internals,become impractical due to IBRs’proprietary nature.Admittance measuremen...Traditional analytical approaches for stability assessment of inverter-based resources(IBRs),often requiring detailed knowledge of IBR internals,become impractical due to IBRs’proprietary nature.Admittance measurements,relying on electromagnetic transient simulation or laboratory settings,are not only time-intensive but also operationally inflexible,since various non-linear control loops make IBRs’admittance models operating-point dependent.Therefore,such admittance measurements must be performed repeatedly when operating point changes.To avoid time-consuming and cumbersome measurements,admittance estimation for arbitrary operating points is highly desirable.However,existing admittance estimation algorithms usually face challenges in versatility,data demands,and accuracy.Addressing this challenge,this letter presents a simple and efficient admittance estimation method for blackboxed IBRs,by utilizing a minimal set of seven operating points to solve a homogeneous linear equation system.Case studies demonstrate this proposed method ensures high accuracy across various types of IBRs.Estimation accuracy is satisfying even when non-negligible measurement errors exist.展开更多
We investigate the resource allocation problem of a cell-free massive multiple-input multiple-output system under the condition of colluding eavesdropping by multiple passive eavesdroppers.To address the problem of li...We investigate the resource allocation problem of a cell-free massive multiple-input multiple-output system under the condition of colluding eavesdropping by multiple passive eavesdroppers.To address the problem of limited pilot resources,a scheme is proposed to allocate the pilot with the minimum pollution to users based on access point selection and optimize the pilot transmission power to improve the accuracy of channel estimation.Aiming at the secure transmission problem under a colluding eavesdropping environment by multiple passive eavesdroppers,based on the local partial zero-forcing precoding scheme,a transmission power optimization scheme is formulated to maximize the system’s minimum security spectral efficiency.Simulation results show that the proposed scheme can effectively reduce channel estimation error and improve system security.展开更多
基金supported by the National Key Research and Development Program of China 2021YFB2900504, 2020YFB1807900。
文摘Low earth orbit(LEO) satellite communications can provide ubiquitous and reliable services,making it an essential part of the Internet of Everything network. Beam hopping(BH) is an emerging technology for effectively addressing the issue of low resource utilization caused by the non-uniform spatio-temporal distribution of traffic demands. However, how to allocate multi-dimensional resources in a timely and efficient way for the highly dynamic LEO satellite systems remains a challenge. This paper proposes a joint beam scheduling and power optimization beam hopping(JBSPO-BH) algorithm considering the differences in the geographic distribution of sink nodes. The JBSPO-BH algorithm decouples the original problem into two sub-problems. The beam scheduling problem is modelled as a potential game,and the Nash equilibrium(NE) point is obtained as the beam scheduling strategy. Moreover, the penalty function interior point method is applied to optimize the power allocation. Simulation results show that the JBSPO-BH algorithm has low time complexity and fast convergence and achieves better performance both in throughput and fairness. Compared with greedybased BH, greedy-based BH with the power optimization, round-robin BH, Max-SINR BH and satellite resource allocation algorithm, the throughput of the proposed algorithm is improved by 44.99%, 20.79%,156.06%, 15.39% and 8.17%, respectively.
基金supported by the National Natural Science Foundation of China(61773172)supported in part by the Australian Research Council(DP200101197,DE210100274)。
文摘In this paper,accelerated saddle point dynamics is proposed for distributed resource allocation over a multi-agent network,which enables a hyper-exponential convergence rate.Specifically,an inertial fast-slow dynamical system with vanishing damping is introduced,based on which the distributed saddle point algorithm is designed.The dual variables are updated in two time scales,i.e.,the fast manifold and the slow manifold.In the fast manifold,the consensus of the Lagrangian multipliers and the tracking of the constraints are pursued by the consensus protocol.In the slow manifold,the updating of the Lagrangian multipliers is accelerated by inertial terms.Hyper-exponential stability is defined to characterize a faster convergence of our proposed algorithm in comparison with conventional primal-dual algorithms for distributed resource allocation.The simulation of the application in the energy dispatch problem verifies the result,which demonstrates the fast convergence of the proposed saddle point dynamics.
文摘The synthesis of geological and petroleum research undertaken in the coastal Sedimentary Basin of the Pointe-Noire region enabled the establishment of a lithostratigraphic scale. It has been observed that the order in which the series observed in outcrop and those encountered by deep wells succeed each other has allowed a value to be given to this relative scale. The study area corresponds to a longitudinal tectonic accident, fault or flexure. It belongs to the Cretaceous and Tertiary coastal sedimentary basin covered by the Plio-Pleistocene age formations (series of circuses), formed of highly permeable sands comprising multiple resistant horizons that store large bodies of water whose reserves are considered very important. Hydrographic network is composed of four main basins with a mediocre size. The quality of this groundwater is considered to be satisfactory for household consumption, but the sustainable management of these reserves requires constant checks on their quality as well as on the level of the reserves. All these resources put the agglomeration of Pointe-Noire close to large exploitable water reserves that meet the need for drinking water, even if, on the whole, the agglomeration is still experiencing many difficulties in terms of its drinking water supply.
文摘The System Resource Constraint Theory intends to research growth of economy under different classes of system resource constraint. By analogy between ecology system and economic system, from the angle of total nature resource, total supply ability and total market volume, the theory focuses on the constraint condition and development characteristic of economy as well as the various game characteristics among economies such as independence, competition, and joint competition. According to the math deduction, the author finds that Logistic model is relative with Marthus's model and Zero-growth model.
文摘Water resource access in the Nouhao sub-basin, assessed based on the availability of drinking water mobilization facilities, the availability of water for uses and the quality of drinking water, revealed that in 2017 the basin was covered by 1249 modern water point, main drinking water sources. On average, the sub-basin shows a ratio of 271 users per drinking water point. Communal level shows some disparity with Bittou recording the highest number of people per drinking water point, i.e., around 537. Water that can be captured in the entire sub-basin meets only 42% of the total water needs from the three mains uses: irrigation, domestic consumption and livestock. The highest demander among these uses is Irrigation with 75% of the need, i.e., approximately 12,859,995 m<sup>3</sup>. Water in 33% drinking sources of this sub basin is of poor quality. Arsenic, one of the quality parameters studied, is found in some communes of the sub-basin. 11% of the water points in Bissiga are arsenic polluted making this commune the most arsenic contaminated location. The vulnerability maps deducted from lack of water for uses;lack of drinking water works and poor water quality shows so, the exposure level of the sub-basin’ communes to some potential risks related to low water resources access.
基金funded by the Australian Research for Global Power System Transformation(Stage 2)Topic 2 and partially funded by the Australian Renewable Energy Agency(Grant No.:2023/ARP010)。
文摘Traditional analytical approaches for stability assessment of inverter-based resources(IBRs),often requiring detailed knowledge of IBR internals,become impractical due to IBRs’proprietary nature.Admittance measurements,relying on electromagnetic transient simulation or laboratory settings,are not only time-intensive but also operationally inflexible,since various non-linear control loops make IBRs’admittance models operating-point dependent.Therefore,such admittance measurements must be performed repeatedly when operating point changes.To avoid time-consuming and cumbersome measurements,admittance estimation for arbitrary operating points is highly desirable.However,existing admittance estimation algorithms usually face challenges in versatility,data demands,and accuracy.Addressing this challenge,this letter presents a simple and efficient admittance estimation method for blackboxed IBRs,by utilizing a minimal set of seven operating points to solve a homogeneous linear equation system.Case studies demonstrate this proposed method ensures high accuracy across various types of IBRs.Estimation accuracy is satisfying even when non-negligible measurement errors exist.
基金supported by the National Natural Science Foundation of China(Nos.62071485,61671472,and 62271503)the Natural Science Foundation of Jiangsu Province,China(Nos.20201334 and 20181335)。
文摘We investigate the resource allocation problem of a cell-free massive multiple-input multiple-output system under the condition of colluding eavesdropping by multiple passive eavesdroppers.To address the problem of limited pilot resources,a scheme is proposed to allocate the pilot with the minimum pollution to users based on access point selection and optimize the pilot transmission power to improve the accuracy of channel estimation.Aiming at the secure transmission problem under a colluding eavesdropping environment by multiple passive eavesdroppers,based on the local partial zero-forcing precoding scheme,a transmission power optimization scheme is formulated to maximize the system’s minimum security spectral efficiency.Simulation results show that the proposed scheme can effectively reduce channel estimation error and improve system security.