期刊文献+
共找到165篇文章
< 1 2 9 >
每页显示 20 50 100
Estimating wood quality attributes from dense airborne LiDAR point clouds
1
作者 Nicolas Cattaneo Stefano Puliti +1 位作者 Carolin Fischer Rasmus Astrup 《Forest Ecosystems》 SCIE CSCD 2024年第2期226-235,共10页
Mapping individual tree quality parameters from high-density LiDAR point clouds is an important step towards improved forest inventories.We present a novel machine learning-based workflow that uses individual tree poi... Mapping individual tree quality parameters from high-density LiDAR point clouds is an important step towards improved forest inventories.We present a novel machine learning-based workflow that uses individual tree point clouds from drone laser scanning to predict wood quality indicators in standing trees.Unlike object reconstruction methods,our approach is based on simple metrics computed on vertical slices that summarize information on point distances,angles,and geometric attributes of the space between and around the points.Our models use these slice metrics as predictors and achieve high accuracy for predicting the diameter of the largest branch per log (DLBs) and stem diameter at different heights (DS) from survey-grade drone laser scans.We show that our models are also robust and accurate when tested on suboptimal versions of the data generated by reductions in the number of points or emulations of suboptimal single-tree segmentation scenarios.Our approach provides a simple,clear,and scalable solution that can be adapted to different situations both for research and more operational mapping. 展开更多
关键词 UAV laser scanning Wood quality Machine learning point cloud metrics
下载PDF
Building 3D CityGML models of mining industrial structures using integrated UAV and TLS point clouds
2
作者 Canh Le Van Cuong Xuan Cao +2 位作者 Anh Ngoc Nguyen Chung Van Pham Long Quoc Nguyen 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第5期158-177,共20页
Mining industrial areas with anthropogenic engineering structures are one of the most distinctive features of the real world.3D models of the real world have been increasingly popular with numerous applications,such a... Mining industrial areas with anthropogenic engineering structures are one of the most distinctive features of the real world.3D models of the real world have been increasingly popular with numerous applications,such as digital twins and smart factory management.In this study,3D models of mining engineering structures were built based on the CityGML standard.For collecting spatial data,the two most popular geospatial technologies,namely UAV-SfM and TLS were employed.The accuracy of the UAV survey was at the centimeter level,and it satisfied the absolute positional accuracy requirement of creat-ing all levels of detail(LoD)according to the CityGML standard.Therefore,the UAV-SfM point cloud dataset was used to build LoD 2 models.In addition,the comparison between the UAV-SfM and TLS sub-clouds of facades and roofs indicates that the UAV-SfM and TLS point clouds of these objects are highly consistent,therefore,point clouds with a higher level of detail and accuracy provided by the integration of UAV-SfM and TLS were used to build LoD 3 models.The resulting 3D CityGML models include 39 buildings at LoD 2,and two mine shafts with hoistrooms,headframes,and sheave wheels at LoD3. 展开更多
关键词 3D modelling CityGML-Mining industry UAV Terrestrial laser scanning point cloud
下载PDF
Perceptual Quality Assessment for Point Clouds:A Survey
3
作者 ZHOU Yingjie ZHANG Zicheng +2 位作者 SUN Wei MIN Xiongkuo ZHAI Guangtao 《ZTE Communications》 2023年第4期3-16,共14页
A point cloud is considered a promising 3D representation that has achieved wide applications in several fields.However,quality degradation inevitably occurs during its acquisition and generation,communication and tra... A point cloud is considered a promising 3D representation that has achieved wide applications in several fields.However,quality degradation inevitably occurs during its acquisition and generation,communication and transmission,and rendering and display.Therefore,how to accurately perceive the visual quality of point clouds is a meaningful topic.In this survey,we first introduce the point cloud to emphasize the importance of point cloud quality assessment(PCQA).A review of subjective PCQA is followed,including common point cloud distortions,subjective experimental setups and subjective databases.Then we review and compare objective PCQA methods in terms of modelbased and projection-based.Finally,we provide evaluation criteria for objective PCQA methods and compare the performances of various methods across multiple databases.This survey provides an overview of classical methods and recent advances in PCQA. 展开更多
关键词 point cloud quality assessment PCQA databases subjective quality assessment objective quality assessment
下载PDF
A modified method of discontinuity trace mapping using three-dimensional point clouds of rock mass surfaces 被引量:6
4
作者 Keshen Zhang Wei Wu +3 位作者 Hehua Zhu Lianyang Zhang Xiaojun Li Hong Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第3期571-586,共16页
This paper presents an automated method for discontinuity trace mapping using three-dimensional point clouds of rock mass surfaces.Specifically,the method consists of five steps:(1)detection of trace feature points by... This paper presents an automated method for discontinuity trace mapping using three-dimensional point clouds of rock mass surfaces.Specifically,the method consists of five steps:(1)detection of trace feature points by normal tensor voting theory,(2)co ntraction of trace feature points,(3)connection of trace feature points,(4)linearization of trace segments,and(5)connection of trace segments.A sensitivity analysis was then conducted to identify the optimal parameters of the proposed method.Three field cases,a natural rock mass outcrop and two excavated rock tunnel surfaces,were analyzed using the proposed method to evaluate its validity and efficiency.The results show that the proposed method is more efficient and accurate than the traditional trace mapping method,and the efficiency enhancement is more robust as the number of feature points increases. 展开更多
关键词 Rock mass DISCONTINUITY Three-dimensional point clouds Trace mapping
下载PDF
A voxel-based fine-scale 3D landscape pattern analysis using laser scanner point clouds
5
作者 SUN Hongzhan WU Qiong 《Global Geology》 2021年第3期177-182,共6页
The landscape pattern metrics can quantitatively describe the characteristics of landscape pattern and are widely used in various fields of landscape ecology.Due to the lack of vertical information,2D landscape metric... The landscape pattern metrics can quantitatively describe the characteristics of landscape pattern and are widely used in various fields of landscape ecology.Due to the lack of vertical information,2D landscape metrics cannot delineate the vertical characteristics of landscape pattern.Based on the point clouds,a high-resolution voxel model and several voxel-based 3D landscape metrics were constructed in this study and 3D metrics calculation results were compared with that of 2D metrics.The results showed that certain quantifying difference exists between 2D and 3D landscape metrics.For landscapes with different components and spatial configurations,significant difference was disclosed between 2D and 3D landscape metrics.3D metrics can better reflect the real spatial structure characteristics of the landscape than 2D metrics. 展开更多
关键词 3D landscape metrics 3D laser scanner VOXEL point clouds
下载PDF
Automated registration of wide-baseline point clouds in forests using discrete overlap search
6
作者 Onni Pohjavirta Xinlian Liang +6 位作者 Yunsheng Wang Antero Kukko Jiri Pyorala Eric Hyyppa Xiaowei Yu Harri Kaartinen Juha Hyyppa 《Forest Ecosystems》 SCIE CSCD 2022年第6期852-877,共26页
Forest is one of the most challenging environments to be recorded in a three-dimensional(3D)digitized geometrical representation,because of the size and the complexity of the environment and the data-acquisition const... Forest is one of the most challenging environments to be recorded in a three-dimensional(3D)digitized geometrical representation,because of the size and the complexity of the environment and the data-acquisition constraints brought by on-site conditions.Previous studies have indicated that the data-acquisition pattern can have more influence on the registration results than other factors.In practice,the ideal short-baseline observations,i.e.,the dense collection mode,is rarely feasible,considering the low accessibility in forest environments and the commonly limited labor and time resources.The wide-baseline observations that cover a forest site using a few folds less observations than short-baseline observations,are therefore more preferable and commonly applied.Nevertheless,the wide-baseline approach is more challenging for data registration since it typically lacks the required sufficient overlaps between datasets.Until now,a robust automated registration solution that is independent of special hardware requirements has still been missing.That is,the registration accuracy is still far from the required level,and the information extractable from the merged point cloud using automated registration could not match that from the merged point cloud using manual registration.This paper proposes a discrete overlap search(DOS)method to find correspondences in the point clouds to solve the low-overlap problem in the wide-baseline point clouds.The proposed automatic method uses potential correspondences from both original data and selected feature points to reconstruct rough observation geometries without external knowledge and to retrieve precise registration parameters at data-level.An extensive experiment was carried out with 24 forest datasets of different conditions categorized in three difficulty levels.The performance of the proposed method was evaluated using various accuracy criteria,as well as based on data acquired from different hardware,platforms,viewing perspectives,and at different points of time.The proposed method achieved a 3D registration accuracy at a 0.50-cm level in all difficulty categories using static terrestrial acquisitions.In the terrestrial-aerial registration,data sets were collected from different sensors and at different points of time with scene changes,and a registration accuracy at the raw data geometric accuracy level was achieved.These results represent the highest automated registration accuracy and the strictest evaluation so far.The proposed method is applicable in multiple scenarios,such as 1)the global positioning of individual under-canopy observations,which is one of the main challenges in applying terrestrial observations lacking a global context,2)the fusion of point clouds acquired from terrestrial and aerial perspectives,which is required in order to achieve a complete forest observation,3)mobile mapping using a new stop-and-go approach,which solves the problems of lacking mobility and slow data collection in static terrestrial measurements as well as the data-quality issue in the continuous mobile approach.Furthermore,this work proposes a new error estimate that units all parameter-level errors into a single quantity and compensates for the downsides of the widely used parameter-and object-level error estimates;it also proposes a new deterministic point sets registration method as an alternative to the popular sampling methods. 展开更多
关键词 Close-range sensing Forest Registration point cloud Wide-baseline Terrestrial laser scanning Unmanned aerial vehicle Drone In situ Discrete overlap search
下载PDF
Accuracy of common stem volume formulae using terrestrial photogrammetric point clouds:a case study with savanna trees in Benin
7
作者 Hospice A.Akpo Gilbert Atindogbe +3 位作者 Maxwell C.Obiakara Arios B.Adjinanoukon Madai Gbedolo Noel H.Fonton 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第6期2415-2422,共8页
Recent applications of digital photogrammetry in forestry have highlighted its utility as a viable mensuration technique.However,in tropical regions little research has been done on the accuracy of this approach for s... Recent applications of digital photogrammetry in forestry have highlighted its utility as a viable mensuration technique.However,in tropical regions little research has been done on the accuracy of this approach for stem volume calculation.In this study,the performance of Structure from Motion photogrammetry for estimating individual tree stem volume in relation to traditional approaches was evaluated.We selected 30 trees from five savanna species growing at the periphery of the W National Park in northern Benin and measured their circumferences at different heights using traditional tape and clinometer.Stem volumes of sample trees were estimated from the measured circumferences using nine volumetric formulae for solids of revolution,including cylinder,cone,paraboloid,neiloid and their respective fustrums.Each tree was photographed and stem volume determined using a taper function derived from tri-dimensional stem models.This reference volume was compared with the results of formulaic estimations.Tree stem profiles were further decomposed into different portions,approximately corresponding to the stump,butt logs and logs,and the suitability of each solid of revolution was assessed for simulating the resulting shapes.Stem volumes calculated using the fustrums of paraboloid and neiloid formulae were the closest to reference volumes with a bias and root mean square error of 8.0%and 24.4%,respectively.Stems closely resembled fustrums of a paraboloid and a neiloid.Individual stem portions assumed different solids as follows:fustrums of paraboloid and neiloid were more prevalent from the stump to breast height,while a paraboloid closely matched stem shapes beyond this point.Therefore,a more accurate stem volumetric estimate was attained when stems were considered as a composite of at least three geometric solids. 展开更多
关键词 Structure from motion photogrammetry point cloud data Stem volume Savanna species BENIN
下载PDF
3D scene graph prediction from point clouds
8
作者 Fanfan WU Feihu YAN +1 位作者 Weimin SHI Zhong ZHOU 《Virtual Reality & Intelligent Hardware》 EI 2022年第1期76-88,共13页
Background In this study,we propose a novel 3D scene graph prediction approach for scene understanding from point clouds.Methods It can automatically organize the entities of a scene in a graph,where objects are nodes... Background In this study,we propose a novel 3D scene graph prediction approach for scene understanding from point clouds.Methods It can automatically organize the entities of a scene in a graph,where objects are nodes and their relationships are modeled as edges.More specifically,we employ the DGCNN to capture the features of objects and their relationships in the scene.A Graph Attention Network(GAT)is introduced to exploit latent features obtained from the initial estimation to further refine the object arrangement in the graph structure.A one loss function modified from cross entropy with a variable weight is proposed to solve the multi-category problem in the prediction of object and predicate.Results Experiments reveal that the proposed approach performs favorably against the state-of-the-art methods in terms of predicate classification and relationship prediction and achieves comparable performance on object classification prediction.Conclusions The 3D scene graph prediction approach can form an abstract description of the scene space from point clouds. 展开更多
关键词 Scene understanding 3D scene graph point cloud DGCNN GAT
下载PDF
Dynamic Scene Graph Generation of Point Clouds with Structural Representation Learning
9
作者 Chao Qi Jianqin Yin +1 位作者 Zhicheng Zhang Jin Tang 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第1期232-243,共12页
Scene graphs of point clouds help to understand object-level relationships in the 3D space.Most graph generation methods work on 2D structured data,which cannot be used for the 3D unstructured point cloud data.Existin... Scene graphs of point clouds help to understand object-level relationships in the 3D space.Most graph generation methods work on 2D structured data,which cannot be used for the 3D unstructured point cloud data.Existing point-cloud-based methods generate the scene graph with an additional graph structure that needs labor-intensive manual annotation.To address these problems,we explore a method to convert the point clouds into structured data and generate graphs without given structures.Specifically,we cluster points with similar augmented features into groups and establish their relationships,resulting in an initial structural representation of the point cloud.Besides,we propose a Dynamic Graph Generation Network(DGGN)to judge the semantic labels of targets of different granularity.It dynamically splits and merges point groups,resulting in a scene graph with high precision.Experiments show that our methods outperform other baseline methods.They output reliable graphs describing the object-level relationships without additional manual labeled data. 展开更多
关键词 scene graph generation structural representation point cloud
原文传递
COMPUTING HARMONIC MAPS AND CONFORMAL MAPS ON POINT CLOUDS
10
作者 Tianqi Wu Shing-Tung Yau 《Journal of Computational Mathematics》 SCIE CSCD 2023年第5期879-908,共30页
We use a narrow-band approach to compute harmonic maps and conformal maps for surfaces embedded in the Euclidean 3-space,using point cloud data only.Given a surface,or a point cloud approximation,we simply use the sta... We use a narrow-band approach to compute harmonic maps and conformal maps for surfaces embedded in the Euclidean 3-space,using point cloud data only.Given a surface,or a point cloud approximation,we simply use the standard cubic lattice to approximate itsϵ-neighborhood.Then the harmonic map of the surface can be approximated by discrete harmonic maps on lattices.The conformal map,or the surface uniformization,is achieved by minimizing the Dirichlet energy of the harmonic map while deforming the target surface of constant curvature.We propose algorithms and numerical examples for closed surfaces and topological disks.To the best of the authors’knowledge,our approach provides the first meshless method for computing harmonic maps and uniformizations of higher genus surfaces. 展开更多
关键词 harmonic maps conformal maps point clouds
原文传递
PuzzleNet:Boundary-Aware Feature Matching for Non-Overlapping 3D Point Clouds Assembly
11
作者 刘昊宇 郭建伟 +3 位作者 姜海勇 刘彦超 张晓鹏 严冬明 《Journal of Computer Science & Technology》 SCIE EI CSCD 2023年第3期492-509,共18页
We address the 3D shape assembly of multiple geometric pieces without overlaps, a scenario often encountered in 3D shape design, field archeology, and robotics. Existing methods depend on strong assumptions on the num... We address the 3D shape assembly of multiple geometric pieces without overlaps, a scenario often encountered in 3D shape design, field archeology, and robotics. Existing methods depend on strong assumptions on the number of shape pieces and coherent geometry or semantics of shape pieces. Despite raising attention to 3D registration with complex or low overlapping patterns, few methods consider shape assembly with rare overlaps. To address this problem, we present a novel framework inspired by solving puzzles, named PuzzleNet, which conducts multi-task learning by leveraging both 3D alignment and boundary information. Specifically, we design an end-to-end neural network based on a point cloud transformer with two-way branches for estimating rigid transformation and predicting boundaries simultaneously. The framework is then naturally extended to reassemble multiple pieces into a full shape by using an iterative greedy approach based on the distance between each pair of candidate-matched pieces. To train and evaluate PuzzleNet, we construct two datasets, named ModelPuzzle and DublinPuzzle, based on a real-world urban scan dataset (DublinCity) and a synthetic CAD dataset (ModelNet40) respectively. Experiments demonstrate our effectiveness in solving 3D shape assembly for multiple pieces with arbitrary geometry and inconsistent semantics. Our method surpasses state-of-the-art algorithms by more than 10 times in rotation metrics and four times in translation metrics. 展开更多
关键词 shape assembly 3D registration geometric learning boundary feature point cloud
原文传递
Grid graph-based large-scale point clouds registration
12
作者 Yi Han Guangyun Zhang Rongting Zhang 《International Journal of Digital Earth》 SCIE EI 2023年第1期2448-2466,共19页
Automatic registration of unordered point clouds is the prerequisite forurban reconstruction. However, most of the existing technologies stillsuffer from some limitations. On one hand, most of them are sensitive tonoi... Automatic registration of unordered point clouds is the prerequisite forurban reconstruction. However, most of the existing technologies stillsuffer from some limitations. On one hand, most of them are sensitive tonoise and repetitive structures, which makes them infeasible for theregistration of large-scale point clouds. On the other hand, most of themdealing with point clouds with limited overlaps and unpredictablelocation. All these problems make it difficult for registration technology toobtain qualified results in outdoor point cloud. To overcome theselimitations, this paper presents a grid graph-based point cloud registration(GGR) algorithm to align pairwise scans. First, point cloud is divided into aset of 3D grids. We propose a voting strategy to measure the similaritybetween two grids based on feature descriptor, transforming thesuperficial correspondence into 3D grid expression. Next, a graphmatching is proposed to capture the spatial consistency from putativecorrespondences, and graph matching hierarchically refines thecorresponding grids until obtaining point-to-point correspondences.Comprehensive experiments demonstrated that the proposed algorithmobtains good performance in terms of successful registration rate, rotationerror, translation error, and outperformed the state-of-the-art approaches. 展开更多
关键词 point cloud alignment scan matching graph algorithms RECONSTRUCTION
原文传递
Automatic extraction and reconstruction of a 3D wireframe of an indoor scene from semantic point clouds
13
作者 Junyi Wei Hangbin Wu +3 位作者 Han Yue Shoujun Jia Jintao Li Chun Liu 《International Journal of Digital Earth》 SCIE EI 2023年第1期3239-3267,共29页
Accurate indoor 3D models are essential for building administration and applications in digital city construction and operation.Developing an automatic and accurate method to reconstruct an indoor model with semantics... Accurate indoor 3D models are essential for building administration and applications in digital city construction and operation.Developing an automatic and accurate method to reconstruct an indoor model with semantics is a challenge in complex indoor environments.Our method focuses on the permanent structure based on a weak Manhattan world assumption,and we propose a pipeline to reconstruct indoor models.First,the proposed method extracts boundary primitives from semantic point clouds,such as floors,walls,ceilings,windows,and doors.The primitives of the building boundary,are aligned to generate the boundaries of the indoor scene,which contains the structure of the horizontal plane and height change in the vertical direction.Then,an optimization algorithm is applied to optimize the geometric relationships among all features based on their categories after the classification process.The heights of feature points are captured and optimized according to their neighborhoods.Finally,a 3D wireframe model of the indoor scene is reconstructed based on the 3D feature information.Experiments on three different datasets demonstrate that the proposed method can be used to effectively reconstruct 3D wireframe models of indoor scenes with high accuracy. 展开更多
关键词 point cloud primitive extraction semantic optimization indoor model reconstruction
原文传递
Point Cloud Classification Using Content-Based Transformer via Clustering in Feature Space
14
作者 Yahui Liu Bin Tian +2 位作者 Yisheng Lv Lingxi Li Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期231-239,共9页
Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to est... Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to establish relationships between distant but relevant points. To overcome the limitation of local spatial attention, we propose a point content-based Transformer architecture, called PointConT for short. It exploits the locality of points in the feature space(content-based), which clusters the sampled points with similar features into the same class and computes the self-attention within each class, thus enabling an effective trade-off between capturing long-range dependencies and computational complexity. We further introduce an inception feature aggregator for point cloud classification, which uses parallel structures to aggregate high-frequency and low-frequency information in each branch separately. Extensive experiments show that our PointConT model achieves a remarkable performance on point cloud shape classification. Especially, our method exhibits 90.3% Top-1 accuracy on the hardest setting of ScanObjectN N. Source code of this paper is available at https://github.com/yahuiliu99/PointC onT. 展开更多
关键词 Content-based Transformer deep learning feature aggregator local attention point cloud classification
下载PDF
Three-dimensional(3D)parametric measurements of individual gravels in the Gobi region using point cloud technique
15
作者 JING Xiangyu HUANG Weiyi KAN Jiangming 《Journal of Arid Land》 SCIE CSCD 2024年第4期500-517,共18页
Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materia... Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments. 展开更多
关键词 Gobi gravels three-dimensional(3D)parameters point cloud 3D reconstruction Random Sample Consensus(RANSAC)algorithm Density-Based Spatial Clustering of Applications with Noise(DBSCAN)
下载PDF
Part-Whole Relational Few-Shot 3D Point Cloud Semantic Segmentation
16
作者 Shoukun Xu Lujun Zhang +2 位作者 Guangqi Jiang Yining Hua Yi Liu 《Computers, Materials & Continua》 SCIE EI 2024年第3期3021-3039,共19页
This paper focuses on the task of few-shot 3D point cloud semantic segmentation.Despite some progress,this task still encounters many issues due to the insufficient samples given,e.g.,incomplete object segmentation an... This paper focuses on the task of few-shot 3D point cloud semantic segmentation.Despite some progress,this task still encounters many issues due to the insufficient samples given,e.g.,incomplete object segmentation and inaccurate semantic discrimination.To tackle these issues,we first leverage part-whole relationships into the task of 3D point cloud semantic segmentation to capture semantic integrity,which is empowered by the dynamic capsule routing with the module of 3D Capsule Networks(CapsNets)in the embedding network.Concretely,the dynamic routing amalgamates geometric information of the 3D point cloud data to construct higher-level feature representations,which capture the relationships between object parts and their wholes.Secondly,we designed a multi-prototype enhancement module to enhance the prototype discriminability.Specifically,the single-prototype enhancement mechanism is expanded to the multi-prototype enhancement version for capturing rich semantics.Besides,the shot-correlation within the category is calculated via the interaction of different samples to enhance the intra-category similarity.Ablation studies prove that the involved part-whole relations and proposed multi-prototype enhancement module help to achieve complete object segmentation and improve semantic discrimination.Moreover,under the integration of these two modules,quantitative and qualitative experiments on two public benchmarks,including S3DIS and ScanNet,indicate the superior performance of the proposed framework on the task of 3D point cloud semantic segmentation,compared to some state-of-the-art methods. 展开更多
关键词 Few-shot point cloud semantic segmentation CapsNets
下载PDF
Intelligent extraction of road cracks based on vehicle laser point cloud and panoramic sequence images
17
作者 Ming Guo Li Zhu +4 位作者 Ming Huang Jie Ji Xian Ren Yaxuan Wei Chutian Gao 《Journal of Road Engineering》 2024年第1期69-79,共11页
In light of the limited efficacy of conventional methods for identifying pavement cracks and the absence of comprehensive depth and location data in two-dimensional photographs,this study presents an intelligent strat... In light of the limited efficacy of conventional methods for identifying pavement cracks and the absence of comprehensive depth and location data in two-dimensional photographs,this study presents an intelligent strategy for extracting road cracks.This methodology involves the integration of laser point cloud data obtained from a vehicle-mounted system and a panoramic sequence of images.The study employs a vehicle-mounted LiDAR measurement system to acquire laser point cloud and panoramic sequence image data simultaneously.A convolutional neural network is utilized to extract cracks from the panoramic sequence image.The extracted sequence image is then aligned with the laser point cloud,enabling the assignment of RGB information to the vehicle-mounted three dimensional(3D)point cloud and location information to the two dimensional(2D)panoramic image.Additionally,a threshold value is set based on the crack elevation change to extract the aligned roadway point cloud.The three-dimensional data pertaining to the cracks can be acquired.The experimental findings demonstrate that the use of convolutional neural networks has yielded noteworthy outcomes in the extraction of road cracks.The utilization of point cloud and image alignment techniques enables the extraction of precise location data pertaining to road cracks.This approach exhibits superior accuracy when compared to conventional methods.Moreover,it facilitates rapid and accurate identification and localization of road cracks,thereby playing a crucial role in ensuring road maintenance and traffic safety.Consequently,this technique finds extensive application in the domains of intelligent transportation and urbanization development.The technology exhibits significant promise for use in the domains of intelligent transportation and city development. 展开更多
关键词 Road crack extraction Vehicle laser point cloud Panoramic sequence images Convolutional neural network
下载PDF
Spatio-Temporal Context-Guided Algorithm for Lossless Point Cloud Geometry Compression
18
作者 ZHANG Huiran DONG Zhen WANG Mingsheng 《ZTE Communications》 2023年第4期17-28,共12页
Point cloud compression is critical to deploy 3D representation of the physical world such as 3D immersive telepresence,autonomous driving,and cultural heritage preservation.However,point cloud data are distributed ir... Point cloud compression is critical to deploy 3D representation of the physical world such as 3D immersive telepresence,autonomous driving,and cultural heritage preservation.However,point cloud data are distributed irregularly and discontinuously in spatial and temporal domains,where redundant unoccupied voxels and weak correlations in 3D space make achieving efficient compression a challenging problem.In this paper,we propose a spatio-temporal context-guided algorithm for lossless point cloud geometry compression.The proposed scheme starts with dividing the point cloud into sliced layers of unit thickness along the longest axis.Then,it introduces a prediction method where both intraframe and inter-frame point clouds are available,by determining correspondences between adjacent layers and estimating the shortest path using the travelling salesman algorithm.Finally,the few prediction residual is efficiently compressed with optimal context-guided and adaptive fastmode arithmetic coding techniques.Experiments prove that the proposed method can effectively achieve low bit rate lossless compression of point cloud geometric information,and is suitable for 3D point cloud compression applicable to various types of scenes. 展开更多
关键词 point cloud geometry compression single-frame point clouds multi-frame point clouds predictive coding arithmetic coding
下载PDF
Automatic registration of MLS point clouds and SfM meshes of urban area 被引量:1
19
作者 Reiji Yoshimura Hiroaki Date +3 位作者 Satoshi Kanai Ryohei Honma Kazuo Oda Tatsuya Ikeda 《Geo-Spatial Information Science》 SCIE EI CSCD 2016年第3期171-181,共11页
Recent advances in 3D scanning technologies allow us to acquire accurate and dense 3D scan data of large-scale environments efficiently.Currently,there are various methods for acquiring largescale 3D scan data,such as... Recent advances in 3D scanning technologies allow us to acquire accurate and dense 3D scan data of large-scale environments efficiently.Currently,there are various methods for acquiring largescale 3D scan data,such as Mobile Laser Scanning(MLS),Airborne Laser Scanning,Terrestrial Laser Scanning,photogrammetry and Structure from Motion(SfM).Especially,MLS is useful to acquire dense point clouds of road and road-side objects,and SfM is a powerful technique to reconstruct meshes with textures from a set of digital images.In this research,a registration method of point clouds from vehicle-based MLS(MLS point cloud),and textured meshes from the SfM of aerial photographs(SfM mesh),is proposed for creating high-quality surface models of urban areas by combining them.In general,SfM mesh has non-scale information;therefore,scale,position,and orientation of the SfM mesh are adjusted in the registration process.In our method,first,2D feature points are extracted from both SfM mesh and MLS point cloud.This process consists of ground-and building-plane extraction by region growing,random sample consensus and least square method,vertical edge extraction by detecting intersections between the planes,and feature point extraction by intersection tests between the ground plane and the edges.Then,the corresponding feature points between the MLS point cloud and the SfM mesh are searched efficiently,using similarity invariant features and hashing.Next,the coordinate transformation is applied to the SfM mesh so that the ground planes and corresponding feature points are adjusted.Finally,scaling Iterative Closest Point algorithm is applied for accurate registration.Experimental results for three data-sets show that our method is effective for the registration of SfM mesh and MLS point cloud of urban areas including buildings. 展开更多
关键词 Registration MLS point clouds SfM mesh urban area HASH similarity invariant feature
原文传递
Surface reconstruction from unorganized point clouds based on edge growing 被引量:1
20
作者 Xu-Jia Qin Zhong-Tian Hu +1 位作者 Hong-Bo Zheng Mei-Yu Zhang 《Advances in Manufacturing》 SCIE CAS CSCD 2019年第3期343-352,共10页
Owing to unorganized point cloud data,unexpected triangles,such as holes and slits,may be generated during mesh surface reconstruction.To solve this problem,a mesh surface reconstruction method based on edge growing f... Owing to unorganized point cloud data,unexpected triangles,such as holes and slits,may be generated during mesh surface reconstruction.To solve this problem,a mesh surface reconstruction method based on edge growing from unorganized point clouds is proposed.The method first constructs an octree structure for unorganized point cloud data,and determines the k-nearest neighbor for each point.Subsequently,the method searches for flat areas in the point clouds to be used as the initial mesh edge growth regions,to avoid incorrect reconstruction of the mesh surface owing to the growth of initial sharp areas.Finally,the optimal mesh surface is obtained by controlling the mesh edge growing based on compulsive restriction and comprehensive optimization criteria.The experimental results of mesh surface reconstruction show that the method is feasible and shows high reconstruction performance without introducing holes or slits in the reconstructed mesh surface. 展开更多
关键词 Mesh surface reconstruction point clouds Edge growing OCTREE
原文传递
上一页 1 2 9 下一页 到第
使用帮助 返回顶部