期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
FATOC:Bug Isolation Based Multi-Fault Localization by Using OPTICS Clustering
1
作者 Yong-Hao Wu Zheng Li +1 位作者 Yong Liu Xiang Chen 《Journal of Computer Science & Technology》 SCIE EI CSCD 2020年第5期979-998,共20页
Bug isolation is a popular approach for multi-fault localization(MFL),where all failed test cases are clustered into several groups,and then the failed test cases in each group combined with all passed test cases are ... Bug isolation is a popular approach for multi-fault localization(MFL),where all failed test cases are clustered into several groups,and then the failed test cases in each group combined with all passed test cases are used to localize only a single fault.However,existing clustering algorithms cannot always obtain completely correct clustering results,which is a potential threat for bug isolation based MFL approaches.To address this issue,we first analyze the influence of the accuracy of the clustering on the performance of MFL,and the results of a controlled study indicate that using the clustering algorithm with the highest accuracy can achieve the best performance of MFL.Moreover,previous studies on clustering algorithms also show that the elements in a higher density cluster have a higher similarity.Based on the above motivation,we propose a novel approach FATOC(One-Fault-at-a-Time via OPTICS Clustering).In particular,FATOC first leverages the OPTICS(Ordering Points to Identify the Clustering Structure)clustering algorithm to group failed test cases,and then identifies a cluster with the highest density.OPTICS clustering is a density-based clustering algorithm,which can reduce the misgrouping and calculate a density value for each cluster.Such a density value of each cluster is helpful for finding a cluster with the highest clustering effectiveness.FATOC then combines the failed test cases in this cluster with all passed test cases to localize a single-fault through the traditional spectrum-based fault localization(SBFL)formula.After this fault is localized and fixed,FATOC will use the same method to localize the next single-fault,until all the test cases are passed.Our evaluation results show that FATOC can significantly outperform the traditional SBFL technique and a state-of-the-art MFL approach MSeer on 804 multi-faulty versions from nine real-world programs.Specifically,FATOC’s performance is 10.32%higher than that of traditional SBFL when using Ochiai formula in terms of metric A-EXAM.Besides,the results also indicate that,when checking 1%,3%and 5%statements of all subject programs,FATOC can locate 36.91%,48.50%and 66.93%of all faults respectively,which is also better than the traditional SBFL and the MFL approach MSeer. 展开更多
关键词 bug isolation multiple-fault localization ordering points to identify the clustering structure(OPTICS)clustering empirical study
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部