Point Sources and Gaussian beams are used frequently as fundamental building blocks for developing ultrasonic beam models. Both these models have different weaknesses that limit their effectiveness. Here, we will show...Point Sources and Gaussian beams are used frequently as fundamental building blocks for developing ultrasonic beam models. Both these models have different weaknesses that limit their effectiveness. Here, we will show that one can develop a Gaussian Beam Equivalent Point Source (GBEPS) model that removes those weaknesses and combines the accuracy and versatility of the point source models with much of the speed and well-behaved nature of Gaussian beam models. We will demonstrate the efficiency and versatility of this new GBEPS model in simulating the beams generated from ultrasonic phased arrays, using as few as one Gaussian beam per element of the array. A single element GBEPS model will be shown to be as accurate as a point source model even when substantial beam focusing or steering is present in the array or where the array beam is transmitted through an interface. At the same time the GBEPS model will be shown to be several orders of magnitude faster than the point source model.展开更多
As a regional, real-time and dynamic method, microseismic monitoring technology is quite an appropriate technology for forecasting geological hazards, such as rock bursts, mine tremors, coal and gas outbursts and can ...As a regional, real-time and dynamic method, microseismic monitoring technology is quite an appropriate technology for forecasting geological hazards, such as rock bursts, mine tremors, coal and gas outbursts and can even be used to prevent or at least reduce these disasters. The study of the focal mechanisms of different seismic sources is the prerequisite and basis for forecasting rock burst by microseismic monitoring technology. Based on the analysis on the mechanism and fracture course of coal pillars where rock bursts occur mostly, the equivalent point source model of the seismicity caused by a coal pillar was created. Given the model, the seismic displacement equation of a coal pillar was analyzed and the seismic mechanism was pointed out by seismic wave theory. The course of the fracture of the coal pillar was simulated closely in the laboratory and the equivalent microseismic signals of the fractures of the coal pillar were acquired using a TDS-6 experimental system. The results show that, by the pressure and friction of a medium near the seismic source, both a compression wave and a shear wave will be emitted and shear fracture will be induced at the moment of breakage. The results can be used to provide an academic basis to forecast and prevent rock bursts or tremors in a coal pillar.展开更多
基金supported by the National Science Foundation Industry/University Cooperative Research Center program at Iowa State Universitythe Natural Sciences and Engineering Research Council of Canadaby the National Natural Science Foundation of China(NSFC)
文摘Point Sources and Gaussian beams are used frequently as fundamental building blocks for developing ultrasonic beam models. Both these models have different weaknesses that limit their effectiveness. Here, we will show that one can develop a Gaussian Beam Equivalent Point Source (GBEPS) model that removes those weaknesses and combines the accuracy and versatility of the point source models with much of the speed and well-behaved nature of Gaussian beam models. We will demonstrate the efficiency and versatility of this new GBEPS model in simulating the beams generated from ultrasonic phased arrays, using as few as one Gaussian beam per element of the array. A single element GBEPS model will be shown to be as accurate as a point source model even when substantial beam focusing or steering is present in the array or where the array beam is transmitted through an interface. At the same time the GBEPS model will be shown to be several orders of magnitude faster than the point source model.
基金Projects 5049027350474068 supported by the National Natural Science Foundation of China+3 种基金2005CB221504 by the National Basic Research Program of China20030290017 by the Special Fund for Ph.D. Programs of the National Ministry of Education2006BAK04B02, 2006BAK03B06 by the National Eleventh Five-Year Key Science & Technology Project[2007]3020 by the State Scholarship Fund of China Scholarship Council
文摘As a regional, real-time and dynamic method, microseismic monitoring technology is quite an appropriate technology for forecasting geological hazards, such as rock bursts, mine tremors, coal and gas outbursts and can even be used to prevent or at least reduce these disasters. The study of the focal mechanisms of different seismic sources is the prerequisite and basis for forecasting rock burst by microseismic monitoring technology. Based on the analysis on the mechanism and fracture course of coal pillars where rock bursts occur mostly, the equivalent point source model of the seismicity caused by a coal pillar was created. Given the model, the seismic displacement equation of a coal pillar was analyzed and the seismic mechanism was pointed out by seismic wave theory. The course of the fracture of the coal pillar was simulated closely in the laboratory and the equivalent microseismic signals of the fractures of the coal pillar were acquired using a TDS-6 experimental system. The results show that, by the pressure and friction of a medium near the seismic source, both a compression wave and a shear wave will be emitted and shear fracture will be induced at the moment of breakage. The results can be used to provide an academic basis to forecast and prevent rock bursts or tremors in a coal pillar.