期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The simulation of ultrasonic beams with a Gaussian beam equivalent point source model 被引量:6
1
作者 SCHMERR L W HUANG R SEDOV A 《Chinese Journal of Acoustics》 2010年第2期97-106,共10页
Point Sources and Gaussian beams are used frequently as fundamental building blocks for developing ultrasonic beam models. Both these models have different weaknesses that limit their effectiveness. Here, we will show... Point Sources and Gaussian beams are used frequently as fundamental building blocks for developing ultrasonic beam models. Both these models have different weaknesses that limit their effectiveness. Here, we will show that one can develop a Gaussian Beam Equivalent Point Source (GBEPS) model that removes those weaknesses and combines the accuracy and versatility of the point source models with much of the speed and well-behaved nature of Gaussian beam models. We will demonstrate the efficiency and versatility of this new GBEPS model in simulating the beams generated from ultrasonic phased arrays, using as few as one Gaussian beam per element of the array. A single element GBEPS model will be shown to be as accurate as a point source model even when substantial beam focusing or steering is present in the array or where the array beam is transmitted through an interface. At the same time the GBEPS model will be shown to be several orders of magnitude faster than the point source model. 展开更多
关键词 The simulation of ultrasonic beams with a Gaussian beam equivalent point source model very exp
原文传递
Focal mechanism caused by fracture or burst of a coal pillar 被引量:8
2
作者 CAO An-ye DOU Lin-ming CHEN Guo-xiang GONG Si-yuan WANG Yu-gang LI Zhi-hua 《Journal of China University of Mining and Technology》 EI 2008年第2期153-158,共6页
As a regional, real-time and dynamic method, microseismic monitoring technology is quite an appropriate technology for forecasting geological hazards, such as rock bursts, mine tremors, coal and gas outbursts and can ... As a regional, real-time and dynamic method, microseismic monitoring technology is quite an appropriate technology for forecasting geological hazards, such as rock bursts, mine tremors, coal and gas outbursts and can even be used to prevent or at least reduce these disasters. The study of the focal mechanisms of different seismic sources is the prerequisite and basis for forecasting rock burst by microseismic monitoring technology. Based on the analysis on the mechanism and fracture course of coal pillars where rock bursts occur mostly, the equivalent point source model of the seismicity caused by a coal pillar was created. Given the model, the seismic displacement equation of a coal pillar was analyzed and the seismic mechanism was pointed out by seismic wave theory. The course of the fracture of the coal pillar was simulated closely in the laboratory and the equivalent microseismic signals of the fractures of the coal pillar were acquired using a TDS-6 experimental system. The results show that, by the pressure and friction of a medium near the seismic source, both a compression wave and a shear wave will be emitted and shear fracture will be induced at the moment of breakage. The results can be used to provide an academic basis to forecast and prevent rock bursts or tremors in a coal pillar. 展开更多
关键词 coal pillar rock burst MICROSEISMICITY FRACTURE focal mechanism point source model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部