In order to get a thorough understanding of non-point source pollution,it is essential to examine its temporal and spatial distribution. A physically-based distributed model,Soil and Water Assessment Tool( SWAT),was u...In order to get a thorough understanding of non-point source pollution,it is essential to examine its temporal and spatial distribution. A physically-based distributed model,Soil and Water Assessment Tool( SWAT),was used in this research,to quantitatively estimate the NPS load and analyze the temporal and spatial distributions of NPS pollution in Ashi River Basin. The results indicated that SWAT was suitable to simulate stream-flow and water quality in Ashi River Basin. Total Nitrogen which was contributed by NPS( NPS-TN) accounted for 32. 47%-62. 61%,and Total Phosphorus which was contributed by NPS( NPS-TP)accounted for 22. 30%- 57. 85% of the total load respectively. In inter-annual timescale,both NPS-TN and NPS-TP were influenced by stream-flow and fertilizer. However,when compared with fertilizer,NPS pollution was more directly affected by stream-flow. In annual timescale,NPS-TN and NPS-TP mainly occurred in flood season( from May to September). In the aspect of space,spatial differences of NPS-TN and NPS-TP were extremely significant. The spatial variations of NPS pollution were mainly influenced by land use,precipitation,soil and slope.展开更多
Landuse is one of the most influential factors of non-point source pollution. Based on the three-year landuse data( 2000,2005 and 2008),Arc GIS and Fragstat were used to analyze the landuse type and the change of land...Landuse is one of the most influential factors of non-point source pollution. Based on the three-year landuse data( 2000,2005 and 2008),Arc GIS and Fragstat were used to analyze the landuse type and the change of landscape pattern. The relationships between landuse and non-point source-total nitrogen( NPS-TN) and nonpoint source-total phosphorus( NPS-TP) were discussed with the methods of spatially statistical analysis,landscape pattern analysis and principal component analysis. The study results conveyed that agricultural land and forestland,which accounted for over 92% of the study area,were the major landuse type of Ashi River Basin.Meanwhile,the NPS pollution had close connections with landuse type and landscape pattern. When it comes to landuse type,the export risks of NPS-TN and NPS-TP were agricultural land > urban land > grassland > forestland. As for landscape pattern,NPS-TN and NPS-TP were positively related to SHDI and SHEI, while negatively connected with LPI,AI and COHESION. Therefore,the study could reach the conclusion that the more fragmented and complicated the landscape patterns were,the more serious the NPS pollution was.展开更多
Objective:To investigate the mechanism of trigger point deactivation induced by pressing manipulation in a rat model and to explore its potential regulation of the inflammatory response through the extracellular signa...Objective:To investigate the mechanism of trigger point deactivation induced by pressing manipulation in a rat model and to explore its potential regulation of the inflammatory response through the extracellular signal-regulated kinase(ERK)/nuclear factor-κB(NF-κB)pathway.Methods:Fifty male Sprague-Dawley rats were randomly divided into a blank group,a model group,a pressing manipulation group,an ERK agonist group,and a pressing manipulation+ERK agonist group,with 10 rats in each group.Except for the blank group,rats in other groups were used to establish the trigger point rat model using the blunt blow combined with the eccentric exercise method.The pressing manipulation group underwent pressing manipulation intervention at the trigger points.The ERK agonist group received an injection of recombinant human epidermal growth factor via the tail vein.The pressing manipulation+ERK agonist group received interventions from both the pressing manipulation and ERK agonist groups.The pressure pain threshold(PPT)was measured by a mechanical pain threshold detector before and after the intervention.The histological changes were evaluated by hematoxylin-eosin staining after the intervention;the expression levels of ERK,phosphorylated ERK(p-ERK),NF-κB p65(p65),phosphorylated NF-κB p65(p-p65),and phosphorylated NF-κB inhibitor(p-IκB)were detected by Western blotting;the levels of interleukin(IL)-1β,IL-6,and tumor necrosis factor(TNF)-αwere detected by enzyme-linked immunosorbent assay.Results:The PPT increased(P<0.05);the inflammatory cells disappeared;the ratios of p-ERK/ERK,p-p65/p65,and p-IκB/β-actin,also the levels of IL-1β,IL-6,and TNF-αall decreased in the pressing manipulation group after the intervention compared with the model group(P<0.05).The PPT decreased significantly(P<0.05),the inflammatory cell presence increased,and the ratios of p-ERK/ERK and p-p65/p65 were elevated(P<0.05);additionally,the levels of IL-6 and TNF-αwere significantly higher in the pressing manipulation+ERK agonist group compared with the pressing manipulation group(P<0.05).The PPT was significantly lower(P<0.05),the inflammatory cell count was higher,the ratios of p-ERK/ERK and p-IκB/β-actin and the levels of IL-1βand TNF-αwere significantly higher in the ERK agonist group compared with the pressing manipulation+ERK agonist group(P<0.05).Conclusion:Pressing manipulation can effectively alleviate inflammation and pain in trigger point model rats,potentially by inhibiting the ERK/NF-κB signaling pathway.展开更多
Using angle-resolved photoemission spectroscopy and density functional theory calculations methods,we investigate the electronic structures and topological properties of ternary tellurides NbIrTe_(4),a candidate for t...Using angle-resolved photoemission spectroscopy and density functional theory calculations methods,we investigate the electronic structures and topological properties of ternary tellurides NbIrTe_(4),a candidate for type-II Weyl semimetal.We demonstrate the presence of several Fermi arcs connecting their corresponding Weyl points on both termination surfaces of the topological material.Our analysis reveals the existence of Dirac points,in addition to Weyl points,giving both theoretical and experimental evidences of the coexistence of Dirac and Weyl points in a single material.These findings not only confirm NbIrTe_(4) as a unique topological semimetal but also open avenues for exploring novel electronic devices based on its coexisting Dirac and Weyl fermions.展开更多
Internet Exchange Point(IXP)is a system that increases network bandwidth performance.Internet exchange points facilitate interconnection among network providers,including Internet Service Providers(ISPs)andContent Del...Internet Exchange Point(IXP)is a system that increases network bandwidth performance.Internet exchange points facilitate interconnection among network providers,including Internet Service Providers(ISPs)andContent Delivery Providers(CDNs).To improve service management,Internet exchange point providers have adopted the Software Defined Network(SDN)paradigm.This implementation is known as a Software-Defined Exchange Point(SDX).It improves network providers’operations and management.However,performance issues still exist,particularly with multi-hop topologies.These issues include switch memory costs,packet processing latency,and link failure recovery delays.The paper proposes Enhanced Link Failure Rerouting(ELFR),an improved mechanism for rerouting link failures in software-defined exchange point networks.The proposed mechanism aims to minimize packet processing time for fast link failure recovery and enhance path calculation efficiency while reducing switch storage overhead by exploiting the Programming Protocol-independent Packet Processors(P4)features.The paper presents the proposed mechanisms’efficiency by utilizing advanced algorithms and demonstrating improved performance in packet processing speed,path calculation effectiveness,and switch storage management compared to current mechanisms.The proposed mechanism shows significant improvements,leading to a 37.5%decrease in Recovery Time(RT)and a 33.33%decrease in both Calculation Time(CT)and Computational Overhead(CO)when compared to current mechanisms.The study highlights the effectiveness and resource efficiency of the proposed mechanism in effectively resolving crucial issues inmulti-hop software-defined exchange point networks.展开更多
Condensed state physics demonstrates that the Curie temperature is the point at which spontaneous magnetization drops to zero, marking the critical transition where ferromagnetic or ferrimagnetic materials transform i...Condensed state physics demonstrates that the Curie temperature is the point at which spontaneous magnetization drops to zero, marking the critical transition where ferromagnetic or ferrimagnetic materials transform into paramagnetic substances. Below the Curie temperature, a material remains ferromagnetic;above it, the material becomes paramagnetic, with its magnetic field easily influenced by external magnetic fileds. For example, the Curie temperature of iron (Fe) is 1043 K, while that of neodymium magnets ranges from 583 to 673 K. From both physics and mathematics perspectives, examining the temperature properties of materials is essential, as it provides valuable insights into their electromagnetic and thermodynamic behaviors. This paper makes a bold assumption and, for the first time, carefully verifies the existence of a Casimir temperature at 0.00206 K under conditions of one-atomic spacing.展开更多
In this paper, the dynamic properties of a discrete predator-prey model are discussed. The properties of non-hyperbolic fixed points and hyperbolic fixed points of the model are analyzed. First, by using the classic S...In this paper, the dynamic properties of a discrete predator-prey model are discussed. The properties of non-hyperbolic fixed points and hyperbolic fixed points of the model are analyzed. First, by using the classic Shengjin formula, we find the existence conditions for fixed points of the model. Then, by using the qualitative theory of ordinary differential equations and matrix theory we indicate which points are hyperbolic and which are non-hyperbolic and the associated conditions.展开更多
BACKGROUND Non-proliferative diabetic retinopathy(NPDR)poses a significant challenge in diabetes management due to its microvascular changes in the retina.Laser photocoagulation,a conventional therapy,aims to mitigate...BACKGROUND Non-proliferative diabetic retinopathy(NPDR)poses a significant challenge in diabetes management due to its microvascular changes in the retina.Laser photocoagulation,a conventional therapy,aims to mitigate the risk of progressing to proliferative diabetic retinopathy(PDR).AIM To compare the efficacy and safety of multi-spot vs single-spot scanning panretinal laser photocoagulation in NPDR patients.METHODS Forty-nine NPDR patients(86 eyes)treated between September 2020 and July 2022 were included.They were randomly allocated into single-spot(n=23,40 eyes)and multi-spot(n=26,46 eyes)groups.Treatment outcomes,including bestcorrected visual acuity(BCVA),central macular thickness(CMT),and mean threshold sensitivity,were assessed at predetermined intervals over 12 months.Adverse reactions were also recorded.RESULTS Energy levels did not significantly differ between groups(P>0.05),but the multi-spot group exhibited lower energy density(P<0.05).BCVA and CMT improvements were noted in the multi-spot group at one-month posttreatment(P<0.05).Adverse reaction incidence was similar between groups(P>0.05).CONCLUSION While energy intensity and safety were comparable between modalities,multi-spot scanning demonstrated lower energy density and showed superior short-term improvements in BCVA and CMT for NPDR patients,with reduced laser-induced damage.展开更多
To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-sca...To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-scale feature descriptors. First, we select the optimal dual-scale descriptors from a range of feature descriptors. Next, we segment the facade according to the threshold value of the chosen optimal dual-scale descriptors. Finally, we use RANSAC (Random Sample Consensus) to fit the segmented surface and optimize the fitting result. Experimental results show that, compared to commonly used facade segmentation algorithms, the proposed method yields more accurate segmentation results, providing a robust data foundation for subsequent 3D model reconstruction of buildings.展开更多
This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones a...This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.展开更多
Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to est...Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to establish relationships between distant but relevant points. To overcome the limitation of local spatial attention, we propose a point content-based Transformer architecture, called PointConT for short. It exploits the locality of points in the feature space(content-based), which clusters the sampled points with similar features into the same class and computes the self-attention within each class, thus enabling an effective trade-off between capturing long-range dependencies and computational complexity. We further introduce an inception feature aggregator for point cloud classification, which uses parallel structures to aggregate high-frequency and low-frequency information in each branch separately. Extensive experiments show that our PointConT model achieves a remarkable performance on point cloud shape classification. Especially, our method exhibits 90.3% Top-1 accuracy on the hardest setting of ScanObjectN N. Source code of this paper is available at https://github.com/yahuiliu99/PointC onT.展开更多
Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ...Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ice class often navigate in channels opened up by icebreakers.Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent.The ship may get stuck if steered into ice fields off the channel.Under this circumstance,it is very important to study how to identify the boundary lines of ice channels with a reliable method.In this paper,a two-staged ice channel identification method is developed based on image segmentation and corner point regression.The first stage employs the image segmentation method to extract channel regions.In the second stage,an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region.A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network.The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset.The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33%on the synthetic ice channel dataset and 70.66%on the real ice channel dataset,and the processing speed can reach up to 14.58frames per second.展开更多
The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current stat...The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current state-of-the-art in the MPM simulation of hydro-mechanical behaviour in two-phase porous geomaterials.The review covers the recent advances and developments in the MPM and their extensions to capture the coupled hydro-mechanical problems involving large deformations.The focus of this review is aiming at providing a clear picture of what has or has not been developed or implemented for simulating two-phase coupled large deformation problems,which will provide some direct reference for both practitioners and researchers.展开更多
Cultural relics line graphic serves as a crucial form of traditional artifact information documentation,which is a simple and intuitive product with low cost of displaying compared with 3D models.Dimensionality reduct...Cultural relics line graphic serves as a crucial form of traditional artifact information documentation,which is a simple and intuitive product with low cost of displaying compared with 3D models.Dimensionality reduction is undoubtedly necessary for line drawings.However,most existing methods for artifact drawing rely on the principles of orthographic projection that always cannot avoid angle occlusion and data overlapping while the surface of cultural relics is complex.Therefore,conformal mapping was introduced as a dimensionality reduction way to compensate for the limitation of orthographic projection.Based on the given criteria for assessing surface complexity,this paper proposed a three-dimensional feature guideline extraction method for complex cultural relic surfaces.A 2D and 3D combined factor that measured the importance of points on describing surface features,vertex weight,was designed.Then the selection threshold for feature guideline extraction was determined based on the differences between vertex weight and shape index distributions.The feasibility and stability were verified through experiments conducted on real cultural relic surface data.Results demonstrated the ability of the method to address the challenges associated with the automatic generation of line drawings for complex surfaces.The extraction method and the obtained results will be useful for line graphic drawing,displaying and propaganda of cultural relics.展开更多
We present an application of short-pulse laser-generated hard x rays for the diagnosis of indirectly driven double shell targets. Coneinserted double shell targets were imploded through an indirect drive approach on t...We present an application of short-pulse laser-generated hard x rays for the diagnosis of indirectly driven double shell targets. Coneinserted double shell targets were imploded through an indirect drive approach on the upgraded SG-II laser facility. Then, based on thepoint-projection hard x-ray radiography technique, time-resolved radiography of the double shell targets, including that of their near-peakcompression, were obtained. The backlighter source was created by the interactions of a high-intensity short pulsed laser with a metalmicrowire target. Images of the target near peak compression were obtained with an Au microwire. In addition, radiation hydrodynamicsimulations were performed, and the target evolution obtained agrees well with the experimental results. Using the radiographic images, arealdensities of the targets were evaluated.展开更多
We study the exceptional-point(EP) structure and the associated quantum dynamics in a system consisting of a non-Hermitian qubit and a Hermitian qubit. We find that the system possesses two sets of EPs, which divide t...We study the exceptional-point(EP) structure and the associated quantum dynamics in a system consisting of a non-Hermitian qubit and a Hermitian qubit. We find that the system possesses two sets of EPs, which divide the systemparameter space into PT-symmetry unbroken, partially broken and fully broken regimes, each with distinct quantumdynamics characteristics. Particularly, in the partially broken regime, while the PT-symmetry is generally broken in the whole four-dimensional Hilbert space, it is preserved in a two-dimensional subspace such that the quantum dynamics in the subspace are similar to those in the PT-symmetry unbroken regime. In addition, we reveal that the competition between the inter-qubit coupling and the intra-qubit driving gives rise to a complex pattern in the EP variation with system parameters.展开更多
This paper focuses on the task of few-shot 3D point cloud semantic segmentation.Despite some progress,this task still encounters many issues due to the insufficient samples given,e.g.,incomplete object segmentation an...This paper focuses on the task of few-shot 3D point cloud semantic segmentation.Despite some progress,this task still encounters many issues due to the insufficient samples given,e.g.,incomplete object segmentation and inaccurate semantic discrimination.To tackle these issues,we first leverage part-whole relationships into the task of 3D point cloud semantic segmentation to capture semantic integrity,which is empowered by the dynamic capsule routing with the module of 3D Capsule Networks(CapsNets)in the embedding network.Concretely,the dynamic routing amalgamates geometric information of the 3D point cloud data to construct higher-level feature representations,which capture the relationships between object parts and their wholes.Secondly,we designed a multi-prototype enhancement module to enhance the prototype discriminability.Specifically,the single-prototype enhancement mechanism is expanded to the multi-prototype enhancement version for capturing rich semantics.Besides,the shot-correlation within the category is calculated via the interaction of different samples to enhance the intra-category similarity.Ablation studies prove that the involved part-whole relations and proposed multi-prototype enhancement module help to achieve complete object segmentation and improve semantic discrimination.Moreover,under the integration of these two modules,quantitative and qualitative experiments on two public benchmarks,including S3DIS and ScanNet,indicate the superior performance of the proposed framework on the task of 3D point cloud semantic segmentation,compared to some state-of-the-art methods.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.51179041)the Major Science and Technology Program for Water Pollution Control and Treatment(Grant No.2013ZX07201007)+2 种基金Natural Science Foundation of Heilongjiang Province,China(Grant No.E201206)Special Fund for Science and Technology Innovation of Harbin(Grant No.2012RFLXS026)the State Key Lab of Urban Water Resource and Environment(Harbin Institute of Technology)(Grant No.2014TS05)
文摘In order to get a thorough understanding of non-point source pollution,it is essential to examine its temporal and spatial distribution. A physically-based distributed model,Soil and Water Assessment Tool( SWAT),was used in this research,to quantitatively estimate the NPS load and analyze the temporal and spatial distributions of NPS pollution in Ashi River Basin. The results indicated that SWAT was suitable to simulate stream-flow and water quality in Ashi River Basin. Total Nitrogen which was contributed by NPS( NPS-TN) accounted for 32. 47%-62. 61%,and Total Phosphorus which was contributed by NPS( NPS-TP)accounted for 22. 30%- 57. 85% of the total load respectively. In inter-annual timescale,both NPS-TN and NPS-TP were influenced by stream-flow and fertilizer. However,when compared with fertilizer,NPS pollution was more directly affected by stream-flow. In annual timescale,NPS-TN and NPS-TP mainly occurred in flood season( from May to September). In the aspect of space,spatial differences of NPS-TN and NPS-TP were extremely significant. The spatial variations of NPS pollution were mainly influenced by land use,precipitation,soil and slope.
基金National Natural Science Foundation of China(No.51179041)the Major Science and Technology Program for Water Pollution Control and Treatment,China(No.2013ZX07201007)+2 种基金Natural Science Foundation of Heilongjiang Province,China(No.E201206)Special Fund for Science and Technology Innovation of Harbin,China(No.2012RFLXS026)the State Key Lab of Urban Water Resource and Environment(Harbin Institute of Technology),China(No.2014TS05)
文摘Landuse is one of the most influential factors of non-point source pollution. Based on the three-year landuse data( 2000,2005 and 2008),Arc GIS and Fragstat were used to analyze the landuse type and the change of landscape pattern. The relationships between landuse and non-point source-total nitrogen( NPS-TN) and nonpoint source-total phosphorus( NPS-TP) were discussed with the methods of spatially statistical analysis,landscape pattern analysis and principal component analysis. The study results conveyed that agricultural land and forestland,which accounted for over 92% of the study area,were the major landuse type of Ashi River Basin.Meanwhile,the NPS pollution had close connections with landuse type and landscape pattern. When it comes to landuse type,the export risks of NPS-TN and NPS-TP were agricultural land > urban land > grassland > forestland. As for landscape pattern,NPS-TN and NPS-TP were positively related to SHDI and SHEI, while negatively connected with LPI,AI and COHESION. Therefore,the study could reach the conclusion that the more fragmented and complicated the landscape patterns were,the more serious the NPS pollution was.
文摘Objective:To investigate the mechanism of trigger point deactivation induced by pressing manipulation in a rat model and to explore its potential regulation of the inflammatory response through the extracellular signal-regulated kinase(ERK)/nuclear factor-κB(NF-κB)pathway.Methods:Fifty male Sprague-Dawley rats were randomly divided into a blank group,a model group,a pressing manipulation group,an ERK agonist group,and a pressing manipulation+ERK agonist group,with 10 rats in each group.Except for the blank group,rats in other groups were used to establish the trigger point rat model using the blunt blow combined with the eccentric exercise method.The pressing manipulation group underwent pressing manipulation intervention at the trigger points.The ERK agonist group received an injection of recombinant human epidermal growth factor via the tail vein.The pressing manipulation+ERK agonist group received interventions from both the pressing manipulation and ERK agonist groups.The pressure pain threshold(PPT)was measured by a mechanical pain threshold detector before and after the intervention.The histological changes were evaluated by hematoxylin-eosin staining after the intervention;the expression levels of ERK,phosphorylated ERK(p-ERK),NF-κB p65(p65),phosphorylated NF-κB p65(p-p65),and phosphorylated NF-κB inhibitor(p-IκB)were detected by Western blotting;the levels of interleukin(IL)-1β,IL-6,and tumor necrosis factor(TNF)-αwere detected by enzyme-linked immunosorbent assay.Results:The PPT increased(P<0.05);the inflammatory cells disappeared;the ratios of p-ERK/ERK,p-p65/p65,and p-IκB/β-actin,also the levels of IL-1β,IL-6,and TNF-αall decreased in the pressing manipulation group after the intervention compared with the model group(P<0.05).The PPT decreased significantly(P<0.05),the inflammatory cell presence increased,and the ratios of p-ERK/ERK and p-p65/p65 were elevated(P<0.05);additionally,the levels of IL-6 and TNF-αwere significantly higher in the pressing manipulation+ERK agonist group compared with the pressing manipulation group(P<0.05).The PPT was significantly lower(P<0.05),the inflammatory cell count was higher,the ratios of p-ERK/ERK and p-IκB/β-actin and the levels of IL-1βand TNF-αwere significantly higher in the ERK agonist group compared with the pressing manipulation+ERK agonist group(P<0.05).Conclusion:Pressing manipulation can effectively alleviate inflammation and pain in trigger point model rats,potentially by inhibiting the ERK/NF-κB signaling pathway.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12274455,12274459,and 12204533)the National Key R&D Program of China (Grant No.2022YFA1403800)the Beijing Natural Science Foundation (Grant No.Z200005)。
文摘Using angle-resolved photoemission spectroscopy and density functional theory calculations methods,we investigate the electronic structures and topological properties of ternary tellurides NbIrTe_(4),a candidate for type-II Weyl semimetal.We demonstrate the presence of several Fermi arcs connecting their corresponding Weyl points on both termination surfaces of the topological material.Our analysis reveals the existence of Dirac points,in addition to Weyl points,giving both theoretical and experimental evidences of the coexistence of Dirac and Weyl points in a single material.These findings not only confirm NbIrTe_(4) as a unique topological semimetal but also open avenues for exploring novel electronic devices based on its coexisting Dirac and Weyl fermions.
文摘Internet Exchange Point(IXP)is a system that increases network bandwidth performance.Internet exchange points facilitate interconnection among network providers,including Internet Service Providers(ISPs)andContent Delivery Providers(CDNs).To improve service management,Internet exchange point providers have adopted the Software Defined Network(SDN)paradigm.This implementation is known as a Software-Defined Exchange Point(SDX).It improves network providers’operations and management.However,performance issues still exist,particularly with multi-hop topologies.These issues include switch memory costs,packet processing latency,and link failure recovery delays.The paper proposes Enhanced Link Failure Rerouting(ELFR),an improved mechanism for rerouting link failures in software-defined exchange point networks.The proposed mechanism aims to minimize packet processing time for fast link failure recovery and enhance path calculation efficiency while reducing switch storage overhead by exploiting the Programming Protocol-independent Packet Processors(P4)features.The paper presents the proposed mechanisms’efficiency by utilizing advanced algorithms and demonstrating improved performance in packet processing speed,path calculation effectiveness,and switch storage management compared to current mechanisms.The proposed mechanism shows significant improvements,leading to a 37.5%decrease in Recovery Time(RT)and a 33.33%decrease in both Calculation Time(CT)and Computational Overhead(CO)when compared to current mechanisms.The study highlights the effectiveness and resource efficiency of the proposed mechanism in effectively resolving crucial issues inmulti-hop software-defined exchange point networks.
文摘Condensed state physics demonstrates that the Curie temperature is the point at which spontaneous magnetization drops to zero, marking the critical transition where ferromagnetic or ferrimagnetic materials transform into paramagnetic substances. Below the Curie temperature, a material remains ferromagnetic;above it, the material becomes paramagnetic, with its magnetic field easily influenced by external magnetic fileds. For example, the Curie temperature of iron (Fe) is 1043 K, while that of neodymium magnets ranges from 583 to 673 K. From both physics and mathematics perspectives, examining the temperature properties of materials is essential, as it provides valuable insights into their electromagnetic and thermodynamic behaviors. This paper makes a bold assumption and, for the first time, carefully verifies the existence of a Casimir temperature at 0.00206 K under conditions of one-atomic spacing.
文摘In this paper, the dynamic properties of a discrete predator-prey model are discussed. The properties of non-hyperbolic fixed points and hyperbolic fixed points of the model are analyzed. First, by using the classic Shengjin formula, we find the existence conditions for fixed points of the model. Then, by using the qualitative theory of ordinary differential equations and matrix theory we indicate which points are hyperbolic and which are non-hyperbolic and the associated conditions.
文摘BACKGROUND Non-proliferative diabetic retinopathy(NPDR)poses a significant challenge in diabetes management due to its microvascular changes in the retina.Laser photocoagulation,a conventional therapy,aims to mitigate the risk of progressing to proliferative diabetic retinopathy(PDR).AIM To compare the efficacy and safety of multi-spot vs single-spot scanning panretinal laser photocoagulation in NPDR patients.METHODS Forty-nine NPDR patients(86 eyes)treated between September 2020 and July 2022 were included.They were randomly allocated into single-spot(n=23,40 eyes)and multi-spot(n=26,46 eyes)groups.Treatment outcomes,including bestcorrected visual acuity(BCVA),central macular thickness(CMT),and mean threshold sensitivity,were assessed at predetermined intervals over 12 months.Adverse reactions were also recorded.RESULTS Energy levels did not significantly differ between groups(P>0.05),but the multi-spot group exhibited lower energy density(P<0.05).BCVA and CMT improvements were noted in the multi-spot group at one-month posttreatment(P<0.05).Adverse reaction incidence was similar between groups(P>0.05).CONCLUSION While energy intensity and safety were comparable between modalities,multi-spot scanning demonstrated lower energy density and showed superior short-term improvements in BCVA and CMT for NPDR patients,with reduced laser-induced damage.
文摘To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-scale feature descriptors. First, we select the optimal dual-scale descriptors from a range of feature descriptors. Next, we segment the facade according to the threshold value of the chosen optimal dual-scale descriptors. Finally, we use RANSAC (Random Sample Consensus) to fit the segmented surface and optimize the fitting result. Experimental results show that, compared to commonly used facade segmentation algorithms, the proposed method yields more accurate segmentation results, providing a robust data foundation for subsequent 3D model reconstruction of buildings.
文摘This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.
基金supported in part by the Nationa Natural Science Foundation of China (61876011)the National Key Research and Development Program of China (2022YFB4703700)+1 种基金the Key Research and Development Program 2020 of Guangzhou (202007050002)the Key-Area Research and Development Program of Guangdong Province (2020B090921003)。
文摘Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to establish relationships between distant but relevant points. To overcome the limitation of local spatial attention, we propose a point content-based Transformer architecture, called PointConT for short. It exploits the locality of points in the feature space(content-based), which clusters the sampled points with similar features into the same class and computes the self-attention within each class, thus enabling an effective trade-off between capturing long-range dependencies and computational complexity. We further introduce an inception feature aggregator for point cloud classification, which uses parallel structures to aggregate high-frequency and low-frequency information in each branch separately. Extensive experiments show that our PointConT model achieves a remarkable performance on point cloud shape classification. Especially, our method exhibits 90.3% Top-1 accuracy on the hardest setting of ScanObjectN N. Source code of this paper is available at https://github.com/yahuiliu99/PointC onT.
基金financially supported by the National Key Research and Development Program(Grant No.2022YFE0107000)the General Projects of the National Natural Science Foundation of China(Grant No.52171259)the High-Tech Ship Research Project of the Ministry of Industry and Information Technology(Grant No.[2021]342)。
文摘Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ice class often navigate in channels opened up by icebreakers.Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent.The ship may get stuck if steered into ice fields off the channel.Under this circumstance,it is very important to study how to identify the boundary lines of ice channels with a reliable method.In this paper,a two-staged ice channel identification method is developed based on image segmentation and corner point regression.The first stage employs the image segmentation method to extract channel regions.In the second stage,an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region.A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network.The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset.The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33%on the synthetic ice channel dataset and 70.66%on the real ice channel dataset,and the processing speed can reach up to 14.58frames per second.
基金The financial supports from National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(Grant No.52022112)the International Postdoctoral Exchange Fellowship Program(Talent-Introduction Program,Grant No.YJ20220219)。
文摘The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current state-of-the-art in the MPM simulation of hydro-mechanical behaviour in two-phase porous geomaterials.The review covers the recent advances and developments in the MPM and their extensions to capture the coupled hydro-mechanical problems involving large deformations.The focus of this review is aiming at providing a clear picture of what has or has not been developed or implemented for simulating two-phase coupled large deformation problems,which will provide some direct reference for both practitioners and researchers.
基金National Natural Science Foundation of China(Nos.42071444,42101444)。
文摘Cultural relics line graphic serves as a crucial form of traditional artifact information documentation,which is a simple and intuitive product with low cost of displaying compared with 3D models.Dimensionality reduction is undoubtedly necessary for line drawings.However,most existing methods for artifact drawing rely on the principles of orthographic projection that always cannot avoid angle occlusion and data overlapping while the surface of cultural relics is complex.Therefore,conformal mapping was introduced as a dimensionality reduction way to compensate for the limitation of orthographic projection.Based on the given criteria for assessing surface complexity,this paper proposed a three-dimensional feature guideline extraction method for complex cultural relic surfaces.A 2D and 3D combined factor that measured the importance of points on describing surface features,vertex weight,was designed.Then the selection threshold for feature guideline extraction was determined based on the differences between vertex weight and shape index distributions.The feasibility and stability were verified through experiments conducted on real cultural relic surface data.Results demonstrated the ability of the method to address the challenges associated with the automatic generation of line drawings for complex surfaces.The extraction method and the obtained results will be useful for line graphic drawing,displaying and propaganda of cultural relics.
基金supported by the National Key R&D Program of China(Grant Nos.2022YFA1603300 and 2022YFA1603200)the Science Challenge Project(Grant No.TZ2018005)in China+1 种基金the National Natural Science Foundation of China(Grant Nos.11805188 and 12175209)the Laser Fusion Research Center Funds for Young Talents(Grant No.RCFPD6-2022-1).
文摘We present an application of short-pulse laser-generated hard x rays for the diagnosis of indirectly driven double shell targets. Coneinserted double shell targets were imploded through an indirect drive approach on the upgraded SG-II laser facility. Then, based on thepoint-projection hard x-ray radiography technique, time-resolved radiography of the double shell targets, including that of their near-peakcompression, were obtained. The backlighter source was created by the interactions of a high-intensity short pulsed laser with a metalmicrowire target. Images of the target near peak compression were obtained with an Au microwire. In addition, radiation hydrodynamicsimulations were performed, and the target evolution obtained agrees well with the experimental results. Using the radiographic images, arealdensities of the targets were evaluated.
基金partly funded by the Natural Science Foundation of Shandong Province of China (Grant Nos. ZR2021MA091 and ZR2018MA044)Introduction and Cultivation Plan of Youth Innovation Talents for Universities of Shandong Province (Research and Innovation Team on Materials Modification and Optoelectronic Devices at extreme conditions)。
文摘We study the exceptional-point(EP) structure and the associated quantum dynamics in a system consisting of a non-Hermitian qubit and a Hermitian qubit. We find that the system possesses two sets of EPs, which divide the systemparameter space into PT-symmetry unbroken, partially broken and fully broken regimes, each with distinct quantumdynamics characteristics. Particularly, in the partially broken regime, while the PT-symmetry is generally broken in the whole four-dimensional Hilbert space, it is preserved in a two-dimensional subspace such that the quantum dynamics in the subspace are similar to those in the PT-symmetry unbroken regime. In addition, we reveal that the competition between the inter-qubit coupling and the intra-qubit driving gives rise to a complex pattern in the EP variation with system parameters.
基金This work is supported by the National Natural Science Foundation of China under Grant No.62001341the National Natural Science Foundation of Jiangsu Province under Grant No.BK20221379the Jiangsu Engineering Research Center of Digital Twinning Technology for Key Equipment in Petrochemical Process under Grant No.DTEC202104.
文摘This paper focuses on the task of few-shot 3D point cloud semantic segmentation.Despite some progress,this task still encounters many issues due to the insufficient samples given,e.g.,incomplete object segmentation and inaccurate semantic discrimination.To tackle these issues,we first leverage part-whole relationships into the task of 3D point cloud semantic segmentation to capture semantic integrity,which is empowered by the dynamic capsule routing with the module of 3D Capsule Networks(CapsNets)in the embedding network.Concretely,the dynamic routing amalgamates geometric information of the 3D point cloud data to construct higher-level feature representations,which capture the relationships between object parts and their wholes.Secondly,we designed a multi-prototype enhancement module to enhance the prototype discriminability.Specifically,the single-prototype enhancement mechanism is expanded to the multi-prototype enhancement version for capturing rich semantics.Besides,the shot-correlation within the category is calculated via the interaction of different samples to enhance the intra-category similarity.Ablation studies prove that the involved part-whole relations and proposed multi-prototype enhancement module help to achieve complete object segmentation and improve semantic discrimination.Moreover,under the integration of these two modules,quantitative and qualitative experiments on two public benchmarks,including S3DIS and ScanNet,indicate the superior performance of the proposed framework on the task of 3D point cloud semantic segmentation,compared to some state-of-the-art methods.