Registrations based on the manual placement of spherical targets are still being employed by many professionals in the industry.However,the placement of those targets usually relies solely on personal experience witho...Registrations based on the manual placement of spherical targets are still being employed by many professionals in the industry.However,the placement of those targets usually relies solely on personal experience without scientific evidence supported by numerical analysis.This paper presents a comprehensive investigation,based on Monte Carlo simulation,into determining the optimal number and positions for efficient target placement in typical scenes consisting of a pair of facades.It demonstrates new check-up statistical rules and geometrical constraints that can effectively extract and analyze massive simulations of unregistered point clouds and their corresponding registrations.More than 6×10^(7) sets of the registrations were simulated,whereas more than IOO registrations with real data were used to verify the results of simulation.The results indicated that using five spherical targets is the best choice for the registration of a large typical registration site consisting of two vertical facades and a ground,when there is only a box set of spherical targets available.As a result,the users can avoid placing extra targets to achieve insignificant improvements in registration accuracy.The results also suggest that the higher registration accuracy can be obtained when the ratio between the facade-to-target distance and target-to-scanner distance is approximately 3:2.Therefore,the targets should be placed closer to the scanner rather than in the middle between the facades and the scanner,contradicting to the traditional thought. Besides,the results reveal that the accuracy can be increased by setting the largest projected triangular area of the targets to be large.展开更多
Compared with the pair-wise registration of point clouds,multi-view point cloud registration is much less studied.In this dissertation,a disordered multi-view point cloud registration method based on the soft trimmed ...Compared with the pair-wise registration of point clouds,multi-view point cloud registration is much less studied.In this dissertation,a disordered multi-view point cloud registration method based on the soft trimmed deep network is proposed.In this method,firstly,the expression ability of feature extraction module is improved and the registration accuracy is increased by enhancing feature extraction network with the point pair feature.Secondly,neighborhood and angle similarities are used to measure the consistency of candidate points to surrounding neighborhoods.By combining distance consistency and high dimensional feature consistency,our network introduces the confidence estimation module of registration,so the point cloud trimmed problem can be converted to candidate for the degree of confidence estimation problem,achieving the pair-wise registration of partially overlapping point clouds.Thirdly,the results from pair-wise registration are fed into the model fusion to achieve the rough registration of multi-view point clouds.Finally,the hierarchical clustering is used to iteratively optimize the clustering center model by gradually increasing the number of clustering categories and performing clustering and registration alternately.This method achieves rough point cloud registration quickly in the early stage,improves the accuracy of multi-view point cloud registration in the later stage,and makes full use of global information to achieve robust and accurate multi-view registration without initial value.展开更多
Point features, as the basis of lines, surfaces, and bodies, are commonly used in medical image registration. To obtain an elegant spatial transformation of extracted feature points, many point set matching algorithms...Point features, as the basis of lines, surfaces, and bodies, are commonly used in medical image registration. To obtain an elegant spatial transformation of extracted feature points, many point set matching algorithms(PMs) have been developed to match two point sets by optimizing multifarious distance functions. There are ample reviews related to medical image registration and PMs which summarize their basic principles and main algorithms separately. However,to data, detailed summary of PMs used in medical image registration in different clinical environments has not been published. In this paper, we provide a comprehensive review of the existing key techniques of the PMs applied to medical image registration according to the basic principles and clinical applications. As the core technique of the PMs, geometric transformation models are elaborated in this paper, demonstrating the mechanism of point set registration. We also focus on the clinical applications of the PMs and propose a practical classification method according to their applications in different clinical surgeries. The aim of this paper is to provide a summary of pointfeaturebased methods used in medical image registration and to guide doctors or researchers interested in this field to choose appropriate techniques in their research.展开更多
The iterative closest point(ICP)algorithm has the advantages of high accuracy and fast speed for point set registration,but it performs poorly when the point set has a large number of noisy outliers.To solve this prob...The iterative closest point(ICP)algorithm has the advantages of high accuracy and fast speed for point set registration,but it performs poorly when the point set has a large number of noisy outliers.To solve this problem,we propose a new affine registration algorithm based on correntropy which works well in the affine registration of point sets with outliers.Firstly,we substitute the traditional measure of least squares with a maximum correntropy criterion to build a new registration model,which can avoid the influence of outliers.To maximize the objective function,we then propose a robust affine ICP algorithm.At each iteration of this new algorithm,we set up the index mapping of two point sets according to the known transformation,and then compute the closed-form solution of the new transformation according to the known index mapping.Similar to the traditional ICP algorithm,our algorithm converges to a local maximum monotonously for any given initial value.Finally,the robustness and high efficiency of affine ICP algorithm based on correntropy are demonstrated by 2D and 3D point set registration experiments.展开更多
Point cloud registration aims to find a rigid transformation for aligning one point cloud to another.Such registration is a fundamental problem in computer vision and robotics,and has been widely used in various appli...Point cloud registration aims to find a rigid transformation for aligning one point cloud to another.Such registration is a fundamental problem in computer vision and robotics,and has been widely used in various applications,including 3D reconstruction,simultaneous localization and mapping,and autonomous driving.Over the last decades,numerous researchers have devoted themselves to tackling this challenging problem.The success of deep learning in high-level vision tasks has recently been extended to different geometric vision tasks.Various types of deep learning based point cloud registration methods have been proposed to exploit different aspects of the problem.However,a comprehensive overview of these approaches remains missing.To this end,in this paper,we summarize the recent progress in this area and present a comprehensive overview regarding deep learning based point cloud registration.We classify the popular approaches into different categories such as correspondences-based and correspondences-free approaches,with effective modules,i.e.,feature extractor,matching,outlier rejection,and motion estimation modules.Furthermore,we discuss the merits and demerits of such approaches in detail.Finally,we provide a systematic and compact framework for currently proposed methods and discuss directions of future research.展开更多
Deep-learning methods provide a promising approach for measuring in-vivo knee joint motion from fast registration of two-dimensional(2D)to three-dimensional(3D)data with a broad range of capture.However,if there are i...Deep-learning methods provide a promising approach for measuring in-vivo knee joint motion from fast registration of two-dimensional(2D)to three-dimensional(3D)data with a broad range of capture.However,if there are insufficient data for training,the data-driven approach will fail.We propose a feature-based transfer-learning method to extract features from fluoroscopic images.With three subjects and fewer than 100 pairs of real fluoroscopic images,we achieved a mean registration success rate of up to 40%.The proposed method provides a promising solution,using a learning-based registration method when only a limited number of real fluoroscopic images is available.展开更多
Airborne laser scanning(ALS)and terrestrial laser scanning(TLS)has attracted attention due to their forest parameter investigation and research applications.ALS is limited to obtaining fi ne structure information belo...Airborne laser scanning(ALS)and terrestrial laser scanning(TLS)has attracted attention due to their forest parameter investigation and research applications.ALS is limited to obtaining fi ne structure information below the forest canopy due to the occlusion of trees in natural forests.In contrast,TLS is unable to gather fi ne structure information about the upper canopy.To address the problem of incomplete acquisition of natural forest point cloud data by ALS and TLS on a single platform,this study proposes data registration without control points.The ALS and TLS original data were cropped according to sample plot size,and the ALS point cloud data was converted into relative coordinates with the center of the cropped data as the origin.The same feature point pairs of the ALS and TLS point cloud data were then selected to register the point cloud data.The initial registered point cloud data was fi nely and optimally registered via the iterative closest point(ICP)algorithm.The results show that the proposed method achieved highprecision registration of ALS and TLS point cloud data from two natural forest plots of Pinus yunnanensis Franch.and Picea asperata Mast.which included diff erent species and environments.An average registration accuracy of 0.06 m and 0.09 m were obtained for P.yunnanensis and P.asperata,respectively.展开更多
Non-rigid registration of point clouds is still far from stable,especially for the largely deformed one.Sparse initial correspondences are often adopted to facilitate the process.However,there are few studies on how t...Non-rigid registration of point clouds is still far from stable,especially for the largely deformed one.Sparse initial correspondences are often adopted to facilitate the process.However,there are few studies on how to build them automatically.Therefore,in this paper,we propose a robust method to compute such priors automatically,where a global and local combined strategy is adopted.These priors in different degrees of deformation are obtained by the locally geometrical-consistent point matches from the globally structural-consistent region correspondences.To further utilize the matches,this paper also proposes a novel registration method based on the Coherent Point Drift framework.This method takes both the spatial proximity and local structural consistency of the priors as supervision of the registration process and thus obtains a robust alignment for clouds with significantly different deformations.Qualitative and quantitative experiments demonstrate the advantages of the proposed method.展开更多
An automatic image registration approach based on wavelet transform is proposed. This proposed method utilizes multiscale wavelet transform to extract feature points. A coarse-to-fine feature matching method is utiliz...An automatic image registration approach based on wavelet transform is proposed. This proposed method utilizes multiscale wavelet transform to extract feature points. A coarse-to-fine feature matching method is utilized in the feature matching phase. A two-way matching method based on cross-correlation to get candidate point pairs and a fine matching based on support strength combine to form the matching algorithm. At last, based on an affine transformation model, the parameters are iteratively refined by using the leastsquares estimation approach. Experimental results have verified that the proposed algorithm can realize automatic registration of various kinds of images rapidly and effectively.展开更多
A novel multi-view 3D face registration method based on principal axis analysis and labeled regions orientation called local orientation registration is proposed.The pre-registration is achieved by transforming the mu...A novel multi-view 3D face registration method based on principal axis analysis and labeled regions orientation called local orientation registration is proposed.The pre-registration is achieved by transforming the multi-pose models to the standard frontal model's reference frame using the principal axis analysis algorithm.Some significant feature regions, such as inner and outer canthus, nose tip vertices, are then located by using geometrical distribution characteristics.These regions are subsequently employed to compute the conversion parameters using the improved iterative closest point algorithm, and the optimal parameters are applied to complete the final registration.Experimental results implemented on the proper database demonstrate that the proposed method significantly outperforms others by achieving 1.249 and 1.910 mean root-mean-square measure with slight and large view variation models, respectively.展开更多
The Coherent Point Drift (CPD) algorithm which based on Gauss Mixture Model is a robust point set registration algorithm. However, the selection of robustness weight which used to describe the noise may directly affec...The Coherent Point Drift (CPD) algorithm which based on Gauss Mixture Model is a robust point set registration algorithm. However, the selection of robustness weight which used to describe the noise may directly affect the point set registration efficiency. For resolving the problem, this paper presents a CPD registration algorithm which based on distance threshold constraint. Before the point set registration, the inaccurate template point set by resampling become the initial point set of point set matching, in order to eliminate some points that the distance to target point set is too close and too far in the inaccurate template point set, and set the weights of robustness as . In the simulation experiments, we make two group experiments: the first group is the registration of the inaccurate template point set and the accurate target point set, while the second group is the registration of the accurate template point set and the accurate target point set. The results of comparison show that our method can solve the problem of selection for the weight. And it improves the speed and precision of the original CPD registration.展开更多
Forest is one of the most challenging environments to be recorded in a three-dimensional(3D)digitized geometrical representation,because of the size and the complexity of the environment and the data-acquisition const...Forest is one of the most challenging environments to be recorded in a three-dimensional(3D)digitized geometrical representation,because of the size and the complexity of the environment and the data-acquisition constraints brought by on-site conditions.Previous studies have indicated that the data-acquisition pattern can have more influence on the registration results than other factors.In practice,the ideal short-baseline observations,i.e.,the dense collection mode,is rarely feasible,considering the low accessibility in forest environments and the commonly limited labor and time resources.The wide-baseline observations that cover a forest site using a few folds less observations than short-baseline observations,are therefore more preferable and commonly applied.Nevertheless,the wide-baseline approach is more challenging for data registration since it typically lacks the required sufficient overlaps between datasets.Until now,a robust automated registration solution that is independent of special hardware requirements has still been missing.That is,the registration accuracy is still far from the required level,and the information extractable from the merged point cloud using automated registration could not match that from the merged point cloud using manual registration.This paper proposes a discrete overlap search(DOS)method to find correspondences in the point clouds to solve the low-overlap problem in the wide-baseline point clouds.The proposed automatic method uses potential correspondences from both original data and selected feature points to reconstruct rough observation geometries without external knowledge and to retrieve precise registration parameters at data-level.An extensive experiment was carried out with 24 forest datasets of different conditions categorized in three difficulty levels.The performance of the proposed method was evaluated using various accuracy criteria,as well as based on data acquired from different hardware,platforms,viewing perspectives,and at different points of time.The proposed method achieved a 3D registration accuracy at a 0.50-cm level in all difficulty categories using static terrestrial acquisitions.In the terrestrial-aerial registration,data sets were collected from different sensors and at different points of time with scene changes,and a registration accuracy at the raw data geometric accuracy level was achieved.These results represent the highest automated registration accuracy and the strictest evaluation so far.The proposed method is applicable in multiple scenarios,such as 1)the global positioning of individual under-canopy observations,which is one of the main challenges in applying terrestrial observations lacking a global context,2)the fusion of point clouds acquired from terrestrial and aerial perspectives,which is required in order to achieve a complete forest observation,3)mobile mapping using a new stop-and-go approach,which solves the problems of lacking mobility and slow data collection in static terrestrial measurements as well as the data-quality issue in the continuous mobile approach.Furthermore,this work proposes a new error estimate that units all parameter-level errors into a single quantity and compensates for the downsides of the widely used parameter-and object-level error estimates;it also proposes a new deterministic point sets registration method as an alternative to the popular sampling methods.展开更多
Building detection in very high resolution (VHR) images is crucial for mapping and analysing urban environments. Since buildings are elevated objects, elevation data need to be integrated with images for reliable dete...Building detection in very high resolution (VHR) images is crucial for mapping and analysing urban environments. Since buildings are elevated objects, elevation data need to be integrated with images for reliable detection. This process requires two critical steps: optical-elevation data co-registration and aboveground elevation calculation. These two steps are still challenging to some extent. Therefore, this paper introduces optical-elevation data co-registration and normalization techniques for generating a dataset that facilitates elevation-based building detection. For achieving accurate co-registration, a dense set of stereo-based elevations is generated and co-registered to their relevant image based on their corresponding image locations. To normalize these co-registered elevations, the bare-earth elevations are detected based on classification information of some terrain-level features after achieving the image co-registration. The developed method was executed and validated. After implementation, 80% overall-quality of detection result was achieved with 94% correct detection. Together, the developed techniques successfully facilitate the incorporation of stereo-based elevations for detecting buildings in VHR remote sensing images.展开更多
Recent days,Image retrieval has become a tedious process as the image database has grown very larger.The introduction of Machine Learning(ML)and Deep Learning(DL)made this process more comfortable.In these,the pair-wi...Recent days,Image retrieval has become a tedious process as the image database has grown very larger.The introduction of Machine Learning(ML)and Deep Learning(DL)made this process more comfortable.In these,the pair-wise label similarity is used tofind the matching images from the database.But this method lacks of limited propose code and weak execution of misclassified images.In order to get-rid of the above problem,a novel triplet based label that incorporates context-spatial similarity measure is proposed.A Point Attention Based Triplet Network(PABTN)is introduced to study propose code that gives maximum discriminative ability.To improve the performance of ranking,a corre-lating resolutions for the classification,triplet labels based onfindings,a spatial-attention mechanism and Region Of Interest(ROI)and small trial information loss containing a new triplet cross-entropy loss are used.From the experimental results,it is shown that the proposed technique exhibits better results in terms of mean Reciprocal Rank(mRR)and mean Average Precision(mAP)in the CIFAR-10 and NUS-WIPE datasets.展开更多
In image-guided radiation therapy, extracting features from medical point cloud is the key technique for multimodality registration. This novel framework, denoted Control Point Net (CPN), provides an alternative to th...In image-guided radiation therapy, extracting features from medical point cloud is the key technique for multimodality registration. This novel framework, denoted Control Point Net (CPN), provides an alternative to the common applications of manually designed keypoint descriptors for coarse point cloud registration. The CPN directly consumes a point cloud, divides it into equally spaced 3D voxels and transforms the points within each voxel into a unified feature representation through voxel feature encoding (VFE) layer. Then all volumetric representations are aggregated by Weighted Extraction Layer which selectively extracts features and synthesize into global descriptors and coordinates of control points. Utilizing global descriptors instead of local features allows the available geometrical data to be better exploited to improve the robustness and precision. Specifically, CPN unifies feature extraction and clustering into a single network, omitting time-consuming feature matching procedure. The algorithm is tested on point cloud datasets generated from CT images. Experiments and comparisons with the state-of-the-art descriptors demonstrate that CPN is highly discriminative, efficient, and robust to noise and density changes.展开更多
We propose a new framework for the sampling,compression,and analysis of distributions of point sets and other geometric objects embedded in Euclidean spaces.Our approach involves constructing a tensor called the RaySe...We propose a new framework for the sampling,compression,and analysis of distributions of point sets and other geometric objects embedded in Euclidean spaces.Our approach involves constructing a tensor called the RaySense sketch,which captures nearest neighbors from the underlying geometry of points along a set of rays.We explore various operations that can be performed on the RaySense sketch,leading to different properties and potential applications.Statistical information about the data set can be extracted from the sketch,independent of the ray set.Line integrals on point sets can be efficiently computed using the sketch.We also present several examples illustrating applications of the proposed strategy in practical scenarios.展开更多
Conventional reliability-based design optimization (RBDO) requires to use the most probable point (MPP) method for a probabilistic analysis of the reliability constraints. A new approach is presented, called as th...Conventional reliability-based design optimization (RBDO) requires to use the most probable point (MPP) method for a probabilistic analysis of the reliability constraints. A new approach is presented, called as the minimum error point (MEP) method or the MEP based method, for reliability-based design optimization, whose idea is to minimize the error produced by approximating performance functions. The MEP based method uses the first order Taylor's expansion at MEP instead of MPP. Examples demonstrate that the MEP based design optimization can ensure product reliability at the required level, which is very imperative for many important engineering systems. The MEP based reliability design optimization method is feasible and is considered as an alternative for solving reliability design optimization problems. The MEP based method is more robust than the commonly used MPP based method for some irregular performance functions.展开更多
By means of programs GTMPAC based- on generalized triangle method,analysis and synthesis of mechanism design in accordance with absolutely graphicalmethod( absolutely germetrical method) are developed.In this paper,we...By means of programs GTMPAC based- on generalized triangle method,analysis and synthesis of mechanism design in accordance with absolutely graphicalmethod( absolutely germetrical method) are developed.In this paper,we make aspecial study about centering- point curve and circling- point curve and couplercurves based on Ball’s points.展开更多
In existing methods for segmented images,either edge point extraction or preservation of edges,compromising contrast images is so sensitive to noise.The Degeneration Threshold Image Detection(DTID)framework has been p...In existing methods for segmented images,either edge point extraction or preservation of edges,compromising contrast images is so sensitive to noise.The Degeneration Threshold Image Detection(DTID)framework has been proposed to improve the contrast of edge filtered images.Initially,DTID uses a Rapid Bilateral Filtering process for filtering edges of contrast images.This filter decomposes input images into base layers in the DTID framework.With minimal filtering time,Rapid Bilateral Filtering handles high dynamic contrast images for smoothening edge preservation.In the DTID framework,Rapid Bilateral Filtering with Shift-Invariant Base Pass Domain Filter is insensitive to noise.This Shift-Invariant Filtering estimates value across edges for removing outliers(i.e.,noise preserving base layers of the contrast image).The intensity values are calculated in the base layer of the contrast image for accurately detecting nearby spatial locations using Shift-Invariant base Pass Domain Filter(SIDF).At last,Affine Planar Transformation is applied to detect edge filtered contrast images in the DTID framework for attaining a high quality of the image.It normalizes the translation and rotation of images.With this,Degeneration Threshold Image Detection maximizes average contrast enhancement quality and performs an experimental evaluation of factors such as detection accuracy,rate,and filtering time on contrast images.Experimental analysis shows that the DTID framework reduces the filtering time taken on contrast images by 54%and improves average contrast enhancement quality by 27%compared to GUMA,HMRF,SWT,and EHS.It provides better performance on the enhancement of average contrast enhancement quality by 28%,detection accuracy rate by 26%,and reduction in filtering time taken on contrast images by 30%compared to state-of-art methods.展开更多
基金Key Research and Development Program of Guangdong Province (No.2020B0101130009)
文摘Registrations based on the manual placement of spherical targets are still being employed by many professionals in the industry.However,the placement of those targets usually relies solely on personal experience without scientific evidence supported by numerical analysis.This paper presents a comprehensive investigation,based on Monte Carlo simulation,into determining the optimal number and positions for efficient target placement in typical scenes consisting of a pair of facades.It demonstrates new check-up statistical rules and geometrical constraints that can effectively extract and analyze massive simulations of unregistered point clouds and their corresponding registrations.More than 6×10^(7) sets of the registrations were simulated,whereas more than IOO registrations with real data were used to verify the results of simulation.The results indicated that using five spherical targets is the best choice for the registration of a large typical registration site consisting of two vertical facades and a ground,when there is only a box set of spherical targets available.As a result,the users can avoid placing extra targets to achieve insignificant improvements in registration accuracy.The results also suggest that the higher registration accuracy can be obtained when the ratio between the facade-to-target distance and target-to-scanner distance is approximately 3:2.Therefore,the targets should be placed closer to the scanner rather than in the middle between the facades and the scanner,contradicting to the traditional thought. Besides,the results reveal that the accuracy can be increased by setting the largest projected triangular area of the targets to be large.
文摘Compared with the pair-wise registration of point clouds,multi-view point cloud registration is much less studied.In this dissertation,a disordered multi-view point cloud registration method based on the soft trimmed deep network is proposed.In this method,firstly,the expression ability of feature extraction module is improved and the registration accuracy is increased by enhancing feature extraction network with the point pair feature.Secondly,neighborhood and angle similarities are used to measure the consistency of candidate points to surrounding neighborhoods.By combining distance consistency and high dimensional feature consistency,our network introduces the confidence estimation module of registration,so the point cloud trimmed problem can be converted to candidate for the degree of confidence estimation problem,achieving the pair-wise registration of partially overlapping point clouds.Thirdly,the results from pair-wise registration are fed into the model fusion to achieve the rough registration of multi-view point clouds.Finally,the hierarchical clustering is used to iteratively optimize the clustering center model by gradually increasing the number of clustering categories and performing clustering and registration alternately.This method achieves rough point cloud registration quickly in the early stage,improves the accuracy of multi-view point cloud registration in the later stage,and makes full use of global information to achieve robust and accurate multi-view registration without initial value.
基金Supported by the National Natural Science Foundation of China(Grant No.61533016)
文摘Point features, as the basis of lines, surfaces, and bodies, are commonly used in medical image registration. To obtain an elegant spatial transformation of extracted feature points, many point set matching algorithms(PMs) have been developed to match two point sets by optimizing multifarious distance functions. There are ample reviews related to medical image registration and PMs which summarize their basic principles and main algorithms separately. However,to data, detailed summary of PMs used in medical image registration in different clinical environments has not been published. In this paper, we provide a comprehensive review of the existing key techniques of the PMs applied to medical image registration according to the basic principles and clinical applications. As the core technique of the PMs, geometric transformation models are elaborated in this paper, demonstrating the mechanism of point set registration. We also focus on the clinical applications of the PMs and propose a practical classification method according to their applications in different clinical surgeries. The aim of this paper is to provide a summary of pointfeaturebased methods used in medical image registration and to guide doctors or researchers interested in this field to choose appropriate techniques in their research.
基金supported in part by the National Natural Science Foundation of China(61627811,61573274,61673126,U1701261)
文摘The iterative closest point(ICP)algorithm has the advantages of high accuracy and fast speed for point set registration,but it performs poorly when the point set has a large number of noisy outliers.To solve this problem,we propose a new affine registration algorithm based on correntropy which works well in the affine registration of point sets with outliers.Firstly,we substitute the traditional measure of least squares with a maximum correntropy criterion to build a new registration model,which can avoid the influence of outliers.To maximize the objective function,we then propose a robust affine ICP algorithm.At each iteration of this new algorithm,we set up the index mapping of two point sets according to the known transformation,and then compute the closed-form solution of the new transformation according to the known index mapping.Similar to the traditional ICP algorithm,our algorithm converges to a local maximum monotonously for any given initial value.Finally,the robustness and high efficiency of affine ICP algorithm based on correntropy are demonstrated by 2D and 3D point set registration experiments.
基金Supported by the National Key Research and Development Program of China under Grant(2018AAA0102803)the National Natural Science Foundation of China under Grants(61871325,61420106007,61671387).
文摘Point cloud registration aims to find a rigid transformation for aligning one point cloud to another.Such registration is a fundamental problem in computer vision and robotics,and has been widely used in various applications,including 3D reconstruction,simultaneous localization and mapping,and autonomous driving.Over the last decades,numerous researchers have devoted themselves to tackling this challenging problem.The success of deep learning in high-level vision tasks has recently been extended to different geometric vision tasks.Various types of deep learning based point cloud registration methods have been proposed to exploit different aspects of the problem.However,a comprehensive overview of these approaches remains missing.To this end,in this paper,we summarize the recent progress in this area and present a comprehensive overview regarding deep learning based point cloud registration.We classify the popular approaches into different categories such as correspondences-based and correspondences-free approaches,with effective modules,i.e.,feature extractor,matching,outlier rejection,and motion estimation modules.Furthermore,we discuss the merits and demerits of such approaches in detail.Finally,we provide a systematic and compact framework for currently proposed methods and discuss directions of future research.
基金sponsored by the National Natural Science Foundation of China(31771017,31972924,81873997)the Science and Technology Commission of Shanghai Municipality(16441908700)+3 种基金the Innovation Research Plan supported by Shanghai Municipal Education Commission(ZXWF082101)the National Key R&D Program of China(2017YFC0110700,2018YFF0300504,2019YFC0120600)the Natural Science Foundation of Shanghai(18ZR1428600)the Interdisciplinary Program of Shanghai Jiao Tong University(ZH2018QNA06,YG2017MS09).
文摘Deep-learning methods provide a promising approach for measuring in-vivo knee joint motion from fast registration of two-dimensional(2D)to three-dimensional(3D)data with a broad range of capture.However,if there are insufficient data for training,the data-driven approach will fail.We propose a feature-based transfer-learning method to extract features from fluoroscopic images.With three subjects and fewer than 100 pairs of real fluoroscopic images,we achieved a mean registration success rate of up to 40%.The proposed method provides a promising solution,using a learning-based registration method when only a limited number of real fluoroscopic images is available.
基金supported by the National Natural Science Foundation of China,Grant Number 41961060by the Program for Innovative Research Team (in Science and Technology) in the University of Yunnan Province,Grant Number IRTSTYN+1 种基金by the Scientific Research Fund Project of the Education Department of Yunnan Province,Grant Numbers 2020J0256 and 2021J0438by the Postgraduate Scientific Research and Innovation Fund Project of Yunnan Normal University,Grant Number YJSJJ21-A08
文摘Airborne laser scanning(ALS)and terrestrial laser scanning(TLS)has attracted attention due to their forest parameter investigation and research applications.ALS is limited to obtaining fi ne structure information below the forest canopy due to the occlusion of trees in natural forests.In contrast,TLS is unable to gather fi ne structure information about the upper canopy.To address the problem of incomplete acquisition of natural forest point cloud data by ALS and TLS on a single platform,this study proposes data registration without control points.The ALS and TLS original data were cropped according to sample plot size,and the ALS point cloud data was converted into relative coordinates with the center of the cropped data as the origin.The same feature point pairs of the ALS and TLS point cloud data were then selected to register the point cloud data.The initial registered point cloud data was fi nely and optimally registered via the iterative closest point(ICP)algorithm.The results show that the proposed method achieved highprecision registration of ALS and TLS point cloud data from two natural forest plots of Pinus yunnanensis Franch.and Picea asperata Mast.which included diff erent species and environments.An average registration accuracy of 0.06 m and 0.09 m were obtained for P.yunnanensis and P.asperata,respectively.
基金supported by Natural Science Foundation of Anhui Province (2108085MF210,1908085MF187)Key Natural Science Fund of Department of Eduction of Anhui Province (KJ2021A0042)Natural Social Science Foundation of China (19BTY091).
文摘Non-rigid registration of point clouds is still far from stable,especially for the largely deformed one.Sparse initial correspondences are often adopted to facilitate the process.However,there are few studies on how to build them automatically.Therefore,in this paper,we propose a robust method to compute such priors automatically,where a global and local combined strategy is adopted.These priors in different degrees of deformation are obtained by the locally geometrical-consistent point matches from the globally structural-consistent region correspondences.To further utilize the matches,this paper also proposes a novel registration method based on the Coherent Point Drift framework.This method takes both the spatial proximity and local structural consistency of the priors as supervision of the registration process and thus obtains a robust alignment for clouds with significantly different deformations.Qualitative and quantitative experiments demonstrate the advantages of the proposed method.
文摘An automatic image registration approach based on wavelet transform is proposed. This proposed method utilizes multiscale wavelet transform to extract feature points. A coarse-to-fine feature matching method is utilized in the feature matching phase. A two-way matching method based on cross-correlation to get candidate point pairs and a fine matching based on support strength combine to form the matching algorithm. At last, based on an affine transformation model, the parameters are iteratively refined by using the leastsquares estimation approach. Experimental results have verified that the proposed algorithm can realize automatic registration of various kinds of images rapidly and effectively.
基金supported by the New Century Excellent Talents of China (NCET-05-0866)
文摘A novel multi-view 3D face registration method based on principal axis analysis and labeled regions orientation called local orientation registration is proposed.The pre-registration is achieved by transforming the multi-pose models to the standard frontal model's reference frame using the principal axis analysis algorithm.Some significant feature regions, such as inner and outer canthus, nose tip vertices, are then located by using geometrical distribution characteristics.These regions are subsequently employed to compute the conversion parameters using the improved iterative closest point algorithm, and the optimal parameters are applied to complete the final registration.Experimental results implemented on the proper database demonstrate that the proposed method significantly outperforms others by achieving 1.249 and 1.910 mean root-mean-square measure with slight and large view variation models, respectively.
文摘The Coherent Point Drift (CPD) algorithm which based on Gauss Mixture Model is a robust point set registration algorithm. However, the selection of robustness weight which used to describe the noise may directly affect the point set registration efficiency. For resolving the problem, this paper presents a CPD registration algorithm which based on distance threshold constraint. Before the point set registration, the inaccurate template point set by resampling become the initial point set of point set matching, in order to eliminate some points that the distance to target point set is too close and too far in the inaccurate template point set, and set the weights of robustness as . In the simulation experiments, we make two group experiments: the first group is the registration of the inaccurate template point set and the accurate target point set, while the second group is the registration of the accurate template point set and the accurate target point set. The results of comparison show that our method can solve the problem of selection for the weight. And it improves the speed and precision of the original CPD registration.
基金financial support from the National Natural Science Foundation of China(Grant Nos.32171789,32211530031)Wuhan University(No.WHUZZJJ202220)Academy of Finland(Nos.334060,334829,331708,344755,337656,334830,293389/314312,334830,319011)。
文摘Forest is one of the most challenging environments to be recorded in a three-dimensional(3D)digitized geometrical representation,because of the size and the complexity of the environment and the data-acquisition constraints brought by on-site conditions.Previous studies have indicated that the data-acquisition pattern can have more influence on the registration results than other factors.In practice,the ideal short-baseline observations,i.e.,the dense collection mode,is rarely feasible,considering the low accessibility in forest environments and the commonly limited labor and time resources.The wide-baseline observations that cover a forest site using a few folds less observations than short-baseline observations,are therefore more preferable and commonly applied.Nevertheless,the wide-baseline approach is more challenging for data registration since it typically lacks the required sufficient overlaps between datasets.Until now,a robust automated registration solution that is independent of special hardware requirements has still been missing.That is,the registration accuracy is still far from the required level,and the information extractable from the merged point cloud using automated registration could not match that from the merged point cloud using manual registration.This paper proposes a discrete overlap search(DOS)method to find correspondences in the point clouds to solve the low-overlap problem in the wide-baseline point clouds.The proposed automatic method uses potential correspondences from both original data and selected feature points to reconstruct rough observation geometries without external knowledge and to retrieve precise registration parameters at data-level.An extensive experiment was carried out with 24 forest datasets of different conditions categorized in three difficulty levels.The performance of the proposed method was evaluated using various accuracy criteria,as well as based on data acquired from different hardware,platforms,viewing perspectives,and at different points of time.The proposed method achieved a 3D registration accuracy at a 0.50-cm level in all difficulty categories using static terrestrial acquisitions.In the terrestrial-aerial registration,data sets were collected from different sensors and at different points of time with scene changes,and a registration accuracy at the raw data geometric accuracy level was achieved.These results represent the highest automated registration accuracy and the strictest evaluation so far.The proposed method is applicable in multiple scenarios,such as 1)the global positioning of individual under-canopy observations,which is one of the main challenges in applying terrestrial observations lacking a global context,2)the fusion of point clouds acquired from terrestrial and aerial perspectives,which is required in order to achieve a complete forest observation,3)mobile mapping using a new stop-and-go approach,which solves the problems of lacking mobility and slow data collection in static terrestrial measurements as well as the data-quality issue in the continuous mobile approach.Furthermore,this work proposes a new error estimate that units all parameter-level errors into a single quantity and compensates for the downsides of the widely used parameter-and object-level error estimates;it also proposes a new deterministic point sets registration method as an alternative to the popular sampling methods.
文摘Building detection in very high resolution (VHR) images is crucial for mapping and analysing urban environments. Since buildings are elevated objects, elevation data need to be integrated with images for reliable detection. This process requires two critical steps: optical-elevation data co-registration and aboveground elevation calculation. These two steps are still challenging to some extent. Therefore, this paper introduces optical-elevation data co-registration and normalization techniques for generating a dataset that facilitates elevation-based building detection. For achieving accurate co-registration, a dense set of stereo-based elevations is generated and co-registered to their relevant image based on their corresponding image locations. To normalize these co-registered elevations, the bare-earth elevations are detected based on classification information of some terrain-level features after achieving the image co-registration. The developed method was executed and validated. After implementation, 80% overall-quality of detection result was achieved with 94% correct detection. Together, the developed techniques successfully facilitate the incorporation of stereo-based elevations for detecting buildings in VHR remote sensing images.
文摘Recent days,Image retrieval has become a tedious process as the image database has grown very larger.The introduction of Machine Learning(ML)and Deep Learning(DL)made this process more comfortable.In these,the pair-wise label similarity is used tofind the matching images from the database.But this method lacks of limited propose code and weak execution of misclassified images.In order to get-rid of the above problem,a novel triplet based label that incorporates context-spatial similarity measure is proposed.A Point Attention Based Triplet Network(PABTN)is introduced to study propose code that gives maximum discriminative ability.To improve the performance of ranking,a corre-lating resolutions for the classification,triplet labels based onfindings,a spatial-attention mechanism and Region Of Interest(ROI)and small trial information loss containing a new triplet cross-entropy loss are used.From the experimental results,it is shown that the proposed technique exhibits better results in terms of mean Reciprocal Rank(mRR)and mean Average Precision(mAP)in the CIFAR-10 and NUS-WIPE datasets.
文摘In image-guided radiation therapy, extracting features from medical point cloud is the key technique for multimodality registration. This novel framework, denoted Control Point Net (CPN), provides an alternative to the common applications of manually designed keypoint descriptors for coarse point cloud registration. The CPN directly consumes a point cloud, divides it into equally spaced 3D voxels and transforms the points within each voxel into a unified feature representation through voxel feature encoding (VFE) layer. Then all volumetric representations are aggregated by Weighted Extraction Layer which selectively extracts features and synthesize into global descriptors and coordinates of control points. Utilizing global descriptors instead of local features allows the available geometrical data to be better exploited to improve the robustness and precision. Specifically, CPN unifies feature extraction and clustering into a single network, omitting time-consuming feature matching procedure. The algorithm is tested on point cloud datasets generated from CT images. Experiments and comparisons with the state-of-the-art descriptors demonstrate that CPN is highly discriminative, efficient, and robust to noise and density changes.
基金supported by the National Science Foundation(Grant No.DMS-1440415)partially supported by a grant from the Simons Foundation,NSF Grants DMS-1720171 and DMS-2110895a Discovery Grant from Natural Sciences and Engineering Research Council of Canada.
文摘We propose a new framework for the sampling,compression,and analysis of distributions of point sets and other geometric objects embedded in Euclidean spaces.Our approach involves constructing a tensor called the RaySense sketch,which captures nearest neighbors from the underlying geometry of points along a set of rays.We explore various operations that can be performed on the RaySense sketch,leading to different properties and potential applications.Statistical information about the data set can be extracted from the sketch,independent of the ray set.Line integrals on point sets can be efficiently computed using the sketch.We also present several examples illustrating applications of the proposed strategy in practical scenarios.
基金This project is supported by National Natural Science Foundation of China(No.50575072)Outstanding Youth Fund of Hunan Education Department, China (No.04B007).
文摘Conventional reliability-based design optimization (RBDO) requires to use the most probable point (MPP) method for a probabilistic analysis of the reliability constraints. A new approach is presented, called as the minimum error point (MEP) method or the MEP based method, for reliability-based design optimization, whose idea is to minimize the error produced by approximating performance functions. The MEP based method uses the first order Taylor's expansion at MEP instead of MPP. Examples demonstrate that the MEP based design optimization can ensure product reliability at the required level, which is very imperative for many important engineering systems. The MEP based reliability design optimization method is feasible and is considered as an alternative for solving reliability design optimization problems. The MEP based method is more robust than the commonly used MPP based method for some irregular performance functions.
文摘By means of programs GTMPAC based- on generalized triangle method,analysis and synthesis of mechanism design in accordance with absolutely graphicalmethod( absolutely germetrical method) are developed.In this paper,we make aspecial study about centering- point curve and circling- point curve and couplercurves based on Ball’s points.
文摘In existing methods for segmented images,either edge point extraction or preservation of edges,compromising contrast images is so sensitive to noise.The Degeneration Threshold Image Detection(DTID)framework has been proposed to improve the contrast of edge filtered images.Initially,DTID uses a Rapid Bilateral Filtering process for filtering edges of contrast images.This filter decomposes input images into base layers in the DTID framework.With minimal filtering time,Rapid Bilateral Filtering handles high dynamic contrast images for smoothening edge preservation.In the DTID framework,Rapid Bilateral Filtering with Shift-Invariant Base Pass Domain Filter is insensitive to noise.This Shift-Invariant Filtering estimates value across edges for removing outliers(i.e.,noise preserving base layers of the contrast image).The intensity values are calculated in the base layer of the contrast image for accurately detecting nearby spatial locations using Shift-Invariant base Pass Domain Filter(SIDF).At last,Affine Planar Transformation is applied to detect edge filtered contrast images in the DTID framework for attaining a high quality of the image.It normalizes the translation and rotation of images.With this,Degeneration Threshold Image Detection maximizes average contrast enhancement quality and performs an experimental evaluation of factors such as detection accuracy,rate,and filtering time on contrast images.Experimental analysis shows that the DTID framework reduces the filtering time taken on contrast images by 54%and improves average contrast enhancement quality by 27%compared to GUMA,HMRF,SWT,and EHS.It provides better performance on the enhancement of average contrast enhancement quality by 28%,detection accuracy rate by 26%,and reduction in filtering time taken on contrast images by 30%compared to state-of-art methods.