The load spectrum is a crucial factor for assess-ing the fatigue reliability of in-service rolling element bear-ings in transmission systems.For a bearing in a high-speed train gearbox,a measurement technique based on...The load spectrum is a crucial factor for assess-ing the fatigue reliability of in-service rolling element bear-ings in transmission systems.For a bearing in a high-speed train gearbox,a measurement technique based on strain detection of bearing outer ring was used to instrument the bearing and determine the time histories of the distributed load in the bearing under different gear meshing conditions.Accordingly,the load spectrum of the total radial load car-ried by the bearing was compiled.The mean value and class interval of the obtained load spectrum were found to vary non-monotonously with the speed and torque of gear mesh-ing,which was considered to be caused by the vibration of the shaft and the bearing cage.As the realistic service load input of bearing life assessment,the measured load spectrum under different gear meshing conditions can be used to pre-dict gearbox bearing life realistically based on the damage-equivalent principle and actual operating conditions.展开更多
Time-varying mesh stiffness(TVMS)is a vital internal excitation source for the spiral bevel gear(SBG)transmission system.Spalling defect often causes decrease in gear mesh stiffness and changes the dynamic characteris...Time-varying mesh stiffness(TVMS)is a vital internal excitation source for the spiral bevel gear(SBG)transmission system.Spalling defect often causes decrease in gear mesh stiffness and changes the dynamic characteristics of the gear system,which further increases noise and vibration.This paper aims to calculate the TVMS and establish dynamic model of SBG with spalling defect.In this study,a novel analytical model based on slice method is proposed to calculate the TVMS of SBG considering spalling defect.Subsequently,the influence of spalling defect on the TVMS is studied through a numerical simulation,and the proposed analytical model is verified by a finite element model.Besides,an 8-degrees-of-freedom dynamic model is established for SBG transmission system.Incorporating the spalling defect into TVMS,the dynamic responses of spalled SBG are analyzed.The numerical results indicate that spalling defect would cause periodic impact in time domain.Finally,an experiment is designed to verify the proposed dynamic model.The experimental results show that the spalling defect makes the response characterized by periodic impact with the rotating frequency of spalled pinion.展开更多
This paper presents an analysis result of three-dimensional meshing of crown gear coupling (CGC) surfaces of crown gear and internal gear are established. The equation of internal gear surface is given. The equation...This paper presents an analysis result of three-dimensional meshing of crown gear coupling (CGC) surfaces of crown gear and internal gear are established. The equation of internal gear surface is given. The equation of conjugate surface of crown gear is solved according to the principle of gearing, and that of non-conjugate crown gear is derived with crown curve of a circular arc. The meshing state of conjugate and non-conjugate surfaces is analyzed through computation of contact lines and points. It is concluded that the meshing of conjugate CGC is line-contact, there are several pairs of teeth engage simultaneously, and non-conjugate CGC has point-contact condition of meshing and only 2 pairs of teeth engage in theory.展开更多
Wind power has attracted increasing attention as a renewable and clean energy. Gear fault frequently occurs under extreme environment and complex loads. The time-varying meshing stiffness is one of the main excitation...Wind power has attracted increasing attention as a renewable and clean energy. Gear fault frequently occurs under extreme environment and complex loads. The time-varying meshing stiffness is one of the main excitations. This study proposes a 5 degree-of-freedom torsional vibration model for the planetary gear system. The influence of some parameters(e.g., contact ratio and phase difference) is discussed under different conditions of a single teeth pair and double pairs of teeth. The impact load caused by the teeth face fault, ramped load induced by the complex wind conditions, and the harmonic excitation are investigated. The analysis of the time-varying meshing stiffness and the dynamic meshing force shows that the dynamic design under different loads can be made to avoid resonance, can provide the basis for the gear fault location of a wind turbine, and distinguish the fault characteristics from the vibration signals.展开更多
The structure of cylindrical tri-sine oscillating tooth gear drive is presented. Based on the space meshing theory, equations of meshing and tooth profile are established and its meshing theory is studied. Using Pro/E...The structure of cylindrical tri-sine oscillating tooth gear drive is presented. Based on the space meshing theory, equations of meshing and tooth profile are established and its meshing theory is studied. Using Pro/E, this system is modeled and simulated,which is compared with the above-established equations.展开更多
The thermal elasto-hydrodynamic lubrication characteristics of the internal meshing gears in a planetary gear train under vibrations were examined considering the influence of the modification coefficient and time-var...The thermal elasto-hydrodynamic lubrication characteristics of the internal meshing gears in a planetary gear train under vibrations were examined considering the influence of the modification coefficient and time-varying meshing stiffness.Based on dynamic theory of the gear system,a dynamic model of the planetary gear train was established.The lubrication performances of modified gear systems under vibrations and static loads were analyzed.Compared with other transmission types,the best lubrication effect could be produced by the positive transmission.A thicker lubricating oil film could be formed,and the friction coefficient and oil film flash temperature are the smallest.Increasing modification coefficient improves the lubrication performance continuously but intensifies the engage-in and tooth-change impact.For the planetary and inner gears,the increase in the modification coefficient also leads a decrease in the oil film stiffness.展开更多
Simulation study on the cylindrical gear meshing with the evolution gear meshing stiffness is being done for better understanding the dynamic characteristics of the kinematics.With consideration of damping,bearing cle...Simulation study on the cylindrical gear meshing with the evolution gear meshing stiffness is being done for better understanding the dynamic characteristics of the kinematics.With consideration of damping,bearing clearance and gear backlash nonlinearity,the dynamic model is set up and computed in MATLAB.The analysis about the relationship between the kinematic responses and the meshing stiffness are carried out.And the results showed that as the gear mesh stiffness is changed from small to large,the performance of the system is changed from the harmonic stable periodic motion to with one times,two times,four times,ending chaos of the stability of the bifurcation.The research results would have theoretical guidance value for the fault diagnosis in engineering.展开更多
Playing a critical role in transmitting movement and power, the meshing performance of spiral bevel gears has a significant effect on products' operational performance. To evaluate the meshing performance, the acc...Playing a critical role in transmitting movement and power, the meshing performance of spiral bevel gears has a significant effect on products' operational performance. To evaluate the meshing performance, the accurate three-dimensional(3D) spiral bevel gear models are established through the Pro/E and MATLAB softwares, and the finite element analysis(FEA) methods are applied to the theoretical investigation of the influence of cutter diameter on meshing performance in spiral bevel gears. The results obtained show that the cutter diameter has a significant influence on spiral bevel gears' meshing performance, such as the contact area, contact pressure, bending stress, torsional stiffness and transmission error.展开更多
Nonlinear dynamic analysis was performed on a planetary gear transmission system with meshing beyond the pitch point.The parameters of the planetary gear system were optimized,and a two-dimensional nonlinear dynamic m...Nonlinear dynamic analysis was performed on a planetary gear transmission system with meshing beyond the pitch point.The parameters of the planetary gear system were optimized,and a two-dimensional nonlinear dynamic model was established using the lumped-mass method.Time-varying meshing stiffness was calculated by the energy method.The model consumes the backlash,bearing clearance,time-varying meshing stiffness,time-varying bearing stiffness,and time-varying friction coefficient.The time-varying bearing stiffness was calculated according to the Hertz contact theory.The load distribution among the gears was computed,and the time-varying friction coefficient was calculated according to elastohydrodynamic lubrication(EHL)theory.The dynamical equations were solved via numerical integration.The global bifurcation characteristics caused by the input speed,backlash,bearing clearance,and damping were analyzed.The system was in a chaotic state at natural frequencies or frequency multiplication.The system transitioned from a single-period state to a chaotic state with the increase of the backlash.The bearing clearance of the sun gear had little influence on the bifurcation characteristics.The amplitude was restrained in the chaotic state as the damping ratio increased.展开更多
A mixed finite element solution of contact stresses in meshing gears is investigated with the consideration of coupled thermo-elastic deformation and impact behavior. A simulation procedure of finite element solution ...A mixed finite element solution of contact stresses in meshing gears is investigated with the consideration of coupled thermo-elastic deformation and impact behavior. A simulation procedure of finite element solution of meshing gears is developed. The versatility of the procedure for both numerical accuracy and computational efficiency is verified by numerical analysis of meshing gear teeth.展开更多
For the design of gears manufactured with wire electrical discharge machining (WEDM) technology, determination of the primary gear parameters is discussed considering the characteristics of the machining method. Som...For the design of gears manufactured with wire electrical discharge machining (WEDM) technology, determination of the primary gear parameters is discussed considering the characteristics of the machining method. Some constraint conditions on gear parameters are abnegated, which makes micro gear design more flexible. Based on gear mesh theory, the algorithm of generating gear tooth profiles is studied, which includes involute and non-involute curve segments. The phenomena of tooth profile interferences during gear mesh are analyzed, and a gear mesh simulation algorithm is designed. Based on ACIS, the WEDM oriented software for the design and mesh simulation of micro gears is developed, by which the modeling, mesh simulation and interference check can be implemented. An experiment is carried out to design and manufacture a pair of micro involute gears, and the proposed method is proved feasible.展开更多
In recent years, a new type of gear named Logix gea r was developed. Actually, the tooth profile of this new type of gear is composed of lots of micro-segment involute curves, and on the profile, there exist lots of p...In recent years, a new type of gear named Logix gea r was developed. Actually, the tooth profile of this new type of gear is composed of lots of micro-segment involute curves, and on the profile, there exist lots of points, which their relative curvatures are equal to zero. This can result in the sliding coefficient smaller between two meshed Logix gears, and the mesh ch aracteristic becomes almost rolling transmission from sliding transmission accor dingly. So, this new type of gear has lots of advantages such as higher contact intensity, longer useful life and can easily realize power transfer of bigger tr ansmission ratio than standard involute gear. Study results showed that the cont act fatigue strength is 3 times larger, the bend fatigue strength is 2.5 times l arger, and the minimum tooth number can be decreased to 3, much smaller than tha t of standard involute gear. In this paper, following studies had been done: 1) The formation principle of Logix gear tooth profile was studied. The theoreti cal models describing the geometrical formations of this type of gear and its re lative Logix rack had been deduced. 2) While cutting a Logix gear, its tooth profile is decided by its normal tooth profile of Logix rack. Besides the basic parameters of standard involute gear, L ogix rack has its own specific parameters such as preliminary pressure angle, re lative pressure angle, and preliminary referential circle radius etc. So, the in fluence of connatural parameters of Logix rack on the tooth profile of Logix gea r had been farther studied. Reasonable selection for these parameters had been d iscussed. 3) Several kinds of transition curves for gear’s tooth profile had been introdu ced, its selection used by Logix gear had been described, and also its mathemati cal description model had been deduced. 4) The mesh theories of Logix gears had been developed. It had been proved that the transmission performance between Logix gears coincides with E-W theorem as that of ordinary standard involute gears. The formula calculating superposition coefficient was deduced according to its definition. Different from standard inv olute gears, the parameter of gear number has no effect on the superposition coe fficient of the Logix gears. Accordingly, bigger ratio transmission can be acqui red by means of decreasing the gear number, and its minimum gear number can be r eached to 3, much smaller than the minimum gear number of ordinary standard invo lute gear: 14~17. This is very important to realize the miniaturization of prod uction design. 5) The CAD special software was developed to design all kinds of Logix gears, an d a solid design example was offered. To sum up, by means of above study, the system info about Logix gear had been de veloped and enriched. This has most significant impact on its widely promotion a nd practical application, on the improvement of carrying capacity, miniaturizati on, and life of kinetic transmission products.展开更多
A nonlinear model of anti-backlash gear with time-varying friction and mesh stiffness was proposed for the further study on dynamic characteristics of anti-backlash gear. In order to improve the model precision, appli...A nonlinear model of anti-backlash gear with time-varying friction and mesh stiffness was proposed for the further study on dynamic characteristics of anti-backlash gear. In order to improve the model precision, applied force analysis was completed in detail, and single or double tooth meshing states of two gear pairs at any timing were determined according to the meshing characteristic of anti-backlash gear. The influences of friction and variations of damping ratio on dynamic transmission error were analyzed finally by numerical calculation and the results show that anti-backlash gear can increase the composite mesh stiffness comparing with the mesh stiffness of the normal gear pair. At the pitch points where the frictions change their signs, additional impulsive effects are observed. The width of impulsive in the same value of center frequency is wider than that without friction, and the amplitude is lower. When gear pairs mesh in and out, damping can reduce the vibration and impact.展开更多
Mesh stiffness is one of important base parameters of face gear dynamic studies.However,a calculation solution of mesh stiffness of face gear drives is not to be constructed due to complex geometric flakes of face gea...Mesh stiffness is one of important base parameters of face gear dynamic studies.However,a calculation solution of mesh stiffness of face gear drives is not to be constructed due to complex geometric flakes of face gear teeth.Thus,a calculation solution of mesh stiffness of face gear drives with a spur gear,which is based on the proposed equivalent face gear teeth and Ishikawa model,is constructed,and the influence of contact effects on mesh stiffness of face gear drives is investigated.The results indicate the mesh stiffness of face gear drives is sensitive to contact effects under heavy loaded operating conditions,specially.These contributions will benefit to improve dynamic studies of face gear drives.展开更多
Special transmission 3D model simulation must be based on surface discretization and reconstruction, but special transmission usually has complicated tooth shape and movement, so present software can't provide techni...Special transmission 3D model simulation must be based on surface discretization and reconstruction, but special transmission usually has complicated tooth shape and movement, so present software can't provide technical support for special transmission 3D model simulation. Currently, theoretical calculation and experimental method are difficult to exactly solve special transmission contact analysis problem. How to reduce calculation and computer memories consume and meet calculation precision is key to resolve special transmission contact analysis problem. According to 3D model simulation and surface reconstruction of quasi ellipsoid gear is difficulty, this paper employes meshless local Petrov-Galerkin (MLPG) method. In order to reduce calculation and computer memories consume, we disperse tooth mesh into finite points--sparseness points cloud or grid mesh, and then we do interpolation reconstruction in some necessary place of the 3D surface model during analysis. Moving least square method (MLSM) is employed for tooth mesh interpolation reconstruction, there are some advantages to do interpolation by means of MLSM, such as high precision, good flexibility and no require of tooth mesh discretization into units. We input the quasi ellipsoid gear reconstruction model into simulation software, we complete tooth meshing simulation. Simulation transmission ratio during meshing period was obtained, compared with theoretical transmission ratio, the result inosculate preferably. The method using curve reconstruction realizes surface reconstruction, reduce simulation calculation enormously, so special gears simulation can be realized by minitype computer. The method provides a novel solution for special transmission 3D model simulation analysis and contact analysis.展开更多
The plastic gear is widely used in agricultural equipment,electronic products,aircraft,and other fields because of its light weight,corrosion resistance,and self-lubrication ability.However,it has a limited range of w...The plastic gear is widely used in agricultural equipment,electronic products,aircraft,and other fields because of its light weight,corrosion resistance,and self-lubrication ability.However,it has a limited range of working conditions due to the low modulus and thermal deformation of the material,especially in high-speed and heavy-duty situations.A compensation modification method(CMM)is proposed in this paper to restrain the heat production of the plastic gear tooth surface by considering the meshing deformation,and the corresponding modification formulas are derived.Improving the position of the maximum contact pressure(CP)and the relative sliding velocity(RSV)of the tooth surface resulted in a 30%lower steady-state temperature rise of the modified plastic gear tooth surface than that of the unmodified plastic gear.Meanwhile,the temperature rise of plastic gear with CMM is reduced by 19%compared with the traditional modification of removal material.Then,the influences of modification index and the segment number of modification on the meshing characteristics of plastic gear with CMM are discussed,such as maximum CP and steadystate temperature rise,RSV,transmission error,meshing angle,and contact ratio.A smaller segment number and modification index are beneficial to reduce the temperature rise of plastic gear with CMM.Finally,an experiment is carried out to verify the theoretical analysis model.展开更多
基金This research was supported by the Joint Funds of the National Natural Science Foundation of China(Grant No.U1834202).
文摘The load spectrum is a crucial factor for assess-ing the fatigue reliability of in-service rolling element bear-ings in transmission systems.For a bearing in a high-speed train gearbox,a measurement technique based on strain detection of bearing outer ring was used to instrument the bearing and determine the time histories of the distributed load in the bearing under different gear meshing conditions.Accordingly,the load spectrum of the total radial load car-ried by the bearing was compiled.The mean value and class interval of the obtained load spectrum were found to vary non-monotonously with the speed and torque of gear mesh-ing,which was considered to be caused by the vibration of the shaft and the bearing cage.As the realistic service load input of bearing life assessment,the measured load spectrum under different gear meshing conditions can be used to pre-dict gearbox bearing life realistically based on the damage-equivalent principle and actual operating conditions.
基金supported by the National Natural Science Foundation of China(grant no.52075414).
文摘Time-varying mesh stiffness(TVMS)is a vital internal excitation source for the spiral bevel gear(SBG)transmission system.Spalling defect often causes decrease in gear mesh stiffness and changes the dynamic characteristics of the gear system,which further increases noise and vibration.This paper aims to calculate the TVMS and establish dynamic model of SBG with spalling defect.In this study,a novel analytical model based on slice method is proposed to calculate the TVMS of SBG considering spalling defect.Subsequently,the influence of spalling defect on the TVMS is studied through a numerical simulation,and the proposed analytical model is verified by a finite element model.Besides,an 8-degrees-of-freedom dynamic model is established for SBG transmission system.Incorporating the spalling defect into TVMS,the dynamic responses of spalled SBG are analyzed.The numerical results indicate that spalling defect would cause periodic impact in time domain.Finally,an experiment is designed to verify the proposed dynamic model.The experimental results show that the spalling defect makes the response characterized by periodic impact with the rotating frequency of spalled pinion.
文摘This paper presents an analysis result of three-dimensional meshing of crown gear coupling (CGC) surfaces of crown gear and internal gear are established. The equation of internal gear surface is given. The equation of conjugate surface of crown gear is solved according to the principle of gearing, and that of non-conjugate crown gear is derived with crown curve of a circular arc. The meshing state of conjugate and non-conjugate surfaces is analyzed through computation of contact lines and points. It is concluded that the meshing of conjugate CGC is line-contact, there are several pairs of teeth engage simultaneously, and non-conjugate CGC has point-contact condition of meshing and only 2 pairs of teeth engage in theory.
基金financially supported by the project‘Research on Key Technologies of Condition Monitoring and Intelligent Early Detection of Wind Turbine Based on Big Data’from State Grid Corporation of China(No.NYB17201600300)
文摘Wind power has attracted increasing attention as a renewable and clean energy. Gear fault frequently occurs under extreme environment and complex loads. The time-varying meshing stiffness is one of the main excitations. This study proposes a 5 degree-of-freedom torsional vibration model for the planetary gear system. The influence of some parameters(e.g., contact ratio and phase difference) is discussed under different conditions of a single teeth pair and double pairs of teeth. The impact load caused by the teeth face fault, ramped load induced by the complex wind conditions, and the harmonic excitation are investigated. The analysis of the time-varying meshing stiffness and the dynamic meshing force shows that the dynamic design under different loads can be made to avoid resonance, can provide the basis for the gear fault location of a wind turbine, and distinguish the fault characteristics from the vibration signals.
文摘The structure of cylindrical tri-sine oscillating tooth gear drive is presented. Based on the space meshing theory, equations of meshing and tooth profile are established and its meshing theory is studied. Using Pro/E, this system is modeled and simulated,which is compared with the above-established equations.
基金Projects(51575289,51705270)supported by the National Natural Science Foundation of China。
文摘The thermal elasto-hydrodynamic lubrication characteristics of the internal meshing gears in a planetary gear train under vibrations were examined considering the influence of the modification coefficient and time-varying meshing stiffness.Based on dynamic theory of the gear system,a dynamic model of the planetary gear train was established.The lubrication performances of modified gear systems under vibrations and static loads were analyzed.Compared with other transmission types,the best lubrication effect could be produced by the positive transmission.A thicker lubricating oil film could be formed,and the friction coefficient and oil film flash temperature are the smallest.Increasing modification coefficient improves the lubrication performance continuously but intensifies the engage-in and tooth-change impact.For the planetary and inner gears,the increase in the modification coefficient also leads a decrease in the oil film stiffness.
基金supported by the National Natural Science Foundation-supported Program(51275052&51575055)
文摘Simulation study on the cylindrical gear meshing with the evolution gear meshing stiffness is being done for better understanding the dynamic characteristics of the kinematics.With consideration of damping,bearing clearance and gear backlash nonlinearity,the dynamic model is set up and computed in MATLAB.The analysis about the relationship between the kinematic responses and the meshing stiffness are carried out.And the results showed that as the gear mesh stiffness is changed from small to large,the performance of the system is changed from the harmonic stable periodic motion to with one times,two times,four times,ending chaos of the stability of the bifurcation.The research results would have theoretical guidance value for the fault diagnosis in engineering.
基金Project(51575416) supported by the National Natural Science Foundation of ChinaProject(IRT13087) supported by Innovative Research Team Development Program of Ministry of Education of China+1 种基金Project(2014CFB876) supported by the Natural Science Foundation of Hubei Province,ChinaProject(2012-86) supported by High-end Talent Leading Program of Hubei Province,China
文摘Playing a critical role in transmitting movement and power, the meshing performance of spiral bevel gears has a significant effect on products' operational performance. To evaluate the meshing performance, the accurate three-dimensional(3D) spiral bevel gear models are established through the Pro/E and MATLAB softwares, and the finite element analysis(FEA) methods are applied to the theoretical investigation of the influence of cutter diameter on meshing performance in spiral bevel gears. The results obtained show that the cutter diameter has a significant influence on spiral bevel gears' meshing performance, such as the contact area, contact pressure, bending stress, torsional stiffness and transmission error.
基金supported by the National Natural Science Foundation of China(No. 51975274)National Key Laboratory of Science and Technology on Helicopter Transmission(Nanjing University of Aeronautics and Astronautics)(No. HTL-A-19K03)
文摘Nonlinear dynamic analysis was performed on a planetary gear transmission system with meshing beyond the pitch point.The parameters of the planetary gear system were optimized,and a two-dimensional nonlinear dynamic model was established using the lumped-mass method.Time-varying meshing stiffness was calculated by the energy method.The model consumes the backlash,bearing clearance,time-varying meshing stiffness,time-varying bearing stiffness,and time-varying friction coefficient.The time-varying bearing stiffness was calculated according to the Hertz contact theory.The load distribution among the gears was computed,and the time-varying friction coefficient was calculated according to elastohydrodynamic lubrication(EHL)theory.The dynamical equations were solved via numerical integration.The global bifurcation characteristics caused by the input speed,backlash,bearing clearance,and damping were analyzed.The system was in a chaotic state at natural frequencies or frequency multiplication.The system transitioned from a single-period state to a chaotic state with the increase of the backlash.The bearing clearance of the sun gear had little influence on the bifurcation characteristics.The amplitude was restrained in the chaotic state as the damping ratio increased.
文摘A mixed finite element solution of contact stresses in meshing gears is investigated with the consideration of coupled thermo-elastic deformation and impact behavior. A simulation procedure of finite element solution of meshing gears is developed. The versatility of the procedure for both numerical accuracy and computational efficiency is verified by numerical analysis of meshing gear teeth.
基金The Teaching and Research Award Program for Out-standing Young Teachers in Higher Education Institutions of MOE,P.R.China.
文摘For the design of gears manufactured with wire electrical discharge machining (WEDM) technology, determination of the primary gear parameters is discussed considering the characteristics of the machining method. Some constraint conditions on gear parameters are abnegated, which makes micro gear design more flexible. Based on gear mesh theory, the algorithm of generating gear tooth profiles is studied, which includes involute and non-involute curve segments. The phenomena of tooth profile interferences during gear mesh are analyzed, and a gear mesh simulation algorithm is designed. Based on ACIS, the WEDM oriented software for the design and mesh simulation of micro gears is developed, by which the modeling, mesh simulation and interference check can be implemented. An experiment is carried out to design and manufacture a pair of micro involute gears, and the proposed method is proved feasible.
文摘In recent years, a new type of gear named Logix gea r was developed. Actually, the tooth profile of this new type of gear is composed of lots of micro-segment involute curves, and on the profile, there exist lots of points, which their relative curvatures are equal to zero. This can result in the sliding coefficient smaller between two meshed Logix gears, and the mesh ch aracteristic becomes almost rolling transmission from sliding transmission accor dingly. So, this new type of gear has lots of advantages such as higher contact intensity, longer useful life and can easily realize power transfer of bigger tr ansmission ratio than standard involute gear. Study results showed that the cont act fatigue strength is 3 times larger, the bend fatigue strength is 2.5 times l arger, and the minimum tooth number can be decreased to 3, much smaller than tha t of standard involute gear. In this paper, following studies had been done: 1) The formation principle of Logix gear tooth profile was studied. The theoreti cal models describing the geometrical formations of this type of gear and its re lative Logix rack had been deduced. 2) While cutting a Logix gear, its tooth profile is decided by its normal tooth profile of Logix rack. Besides the basic parameters of standard involute gear, L ogix rack has its own specific parameters such as preliminary pressure angle, re lative pressure angle, and preliminary referential circle radius etc. So, the in fluence of connatural parameters of Logix rack on the tooth profile of Logix gea r had been farther studied. Reasonable selection for these parameters had been d iscussed. 3) Several kinds of transition curves for gear’s tooth profile had been introdu ced, its selection used by Logix gear had been described, and also its mathemati cal description model had been deduced. 4) The mesh theories of Logix gears had been developed. It had been proved that the transmission performance between Logix gears coincides with E-W theorem as that of ordinary standard involute gears. The formula calculating superposition coefficient was deduced according to its definition. Different from standard inv olute gears, the parameter of gear number has no effect on the superposition coe fficient of the Logix gears. Accordingly, bigger ratio transmission can be acqui red by means of decreasing the gear number, and its minimum gear number can be r eached to 3, much smaller than the minimum gear number of ordinary standard invo lute gear: 14~17. This is very important to realize the miniaturization of prod uction design. 5) The CAD special software was developed to design all kinds of Logix gears, an d a solid design example was offered. To sum up, by means of above study, the system info about Logix gear had been de veloped and enriched. This has most significant impact on its widely promotion a nd practical application, on the improvement of carrying capacity, miniaturizati on, and life of kinetic transmission products.
基金Project(51175505)supported by the National Natural Science Foundation of China
文摘A nonlinear model of anti-backlash gear with time-varying friction and mesh stiffness was proposed for the further study on dynamic characteristics of anti-backlash gear. In order to improve the model precision, applied force analysis was completed in detail, and single or double tooth meshing states of two gear pairs at any timing were determined according to the meshing characteristic of anti-backlash gear. The influences of friction and variations of damping ratio on dynamic transmission error were analyzed finally by numerical calculation and the results show that anti-backlash gear can increase the composite mesh stiffness comparing with the mesh stiffness of the normal gear pair. At the pitch points where the frictions change their signs, additional impulsive effects are observed. The width of impulsive in the same value of center frequency is wider than that without friction, and the amplitude is lower. When gear pairs mesh in and out, damping can reduce the vibration and impact.
基金supported by the National Natural Science Foundations of China(Nos.51105194,51375226)the Fundamental Research Funds for the Central Universities(No.NS2015049)
文摘Mesh stiffness is one of important base parameters of face gear dynamic studies.However,a calculation solution of mesh stiffness of face gear drives is not to be constructed due to complex geometric flakes of face gear teeth.Thus,a calculation solution of mesh stiffness of face gear drives with a spur gear,which is based on the proposed equivalent face gear teeth and Ishikawa model,is constructed,and the influence of contact effects on mesh stiffness of face gear drives is investigated.The results indicate the mesh stiffness of face gear drives is sensitive to contact effects under heavy loaded operating conditions,specially.These contributions will benefit to improve dynamic studies of face gear drives.
基金supported by National Natural Science Foundation of China (Grant No. 50905049)Heilongjiang Provincial International Cooperation Project of China (WB06A06)+1 种基金Heilongjiang Provincial Programs for Science and Technology Development of China (GC09A524)Heilongjiang Provincial Postdoctoral Science Foundation of China (LBH-Z09189)
文摘Special transmission 3D model simulation must be based on surface discretization and reconstruction, but special transmission usually has complicated tooth shape and movement, so present software can't provide technical support for special transmission 3D model simulation. Currently, theoretical calculation and experimental method are difficult to exactly solve special transmission contact analysis problem. How to reduce calculation and computer memories consume and meet calculation precision is key to resolve special transmission contact analysis problem. According to 3D model simulation and surface reconstruction of quasi ellipsoid gear is difficulty, this paper employes meshless local Petrov-Galerkin (MLPG) method. In order to reduce calculation and computer memories consume, we disperse tooth mesh into finite points--sparseness points cloud or grid mesh, and then we do interpolation reconstruction in some necessary place of the 3D surface model during analysis. Moving least square method (MLSM) is employed for tooth mesh interpolation reconstruction, there are some advantages to do interpolation by means of MLSM, such as high precision, good flexibility and no require of tooth mesh discretization into units. We input the quasi ellipsoid gear reconstruction model into simulation software, we complete tooth meshing simulation. Simulation transmission ratio during meshing period was obtained, compared with theoretical transmission ratio, the result inosculate preferably. The method using curve reconstruction realizes surface reconstruction, reduce simulation calculation enormously, so special gears simulation can be realized by minitype computer. The method provides a novel solution for special transmission 3D model simulation analysis and contact analysis.
基金supported by the Core Technology Application of Hubei Agricultural Machinery Equipment,China(Grant No.HBSNYT202221).
文摘The plastic gear is widely used in agricultural equipment,electronic products,aircraft,and other fields because of its light weight,corrosion resistance,and self-lubrication ability.However,it has a limited range of working conditions due to the low modulus and thermal deformation of the material,especially in high-speed and heavy-duty situations.A compensation modification method(CMM)is proposed in this paper to restrain the heat production of the plastic gear tooth surface by considering the meshing deformation,and the corresponding modification formulas are derived.Improving the position of the maximum contact pressure(CP)and the relative sliding velocity(RSV)of the tooth surface resulted in a 30%lower steady-state temperature rise of the modified plastic gear tooth surface than that of the unmodified plastic gear.Meanwhile,the temperature rise of plastic gear with CMM is reduced by 19%compared with the traditional modification of removal material.Then,the influences of modification index and the segment number of modification on the meshing characteristics of plastic gear with CMM are discussed,such as maximum CP and steadystate temperature rise,RSV,transmission error,meshing angle,and contact ratio.A smaller segment number and modification index are beneficial to reduce the temperature rise of plastic gear with CMM.Finally,an experiment is carried out to verify the theoretical analysis model.