Point-of-care testing(POCT)is the practice of diagnosing and monitoring diseases where the patient is located,as opposed to traditional treatment conducted solely in a medical laboratory or other clinical setting.POCT...Point-of-care testing(POCT)is the practice of diagnosing and monitoring diseases where the patient is located,as opposed to traditional treatment conducted solely in a medical laboratory or other clinical setting.POCT has been less common in the recent past due to a lack of portable medical devices capable of facilitating effective medical testing.However,recent growth has occurred in this field due to advances in diagnostic technologies,device miniaturization,and progress in wearable electronics.Among these developments,electrochemical sensors have attracted interest in the POCT field due to their high sensitivity,compact size,and affordability.They are used in various applications,from disease diagnosis to health status monitoring.In this paper we explore recent advancements in electrochemical sensors,the methods of fabricating them,and the various types of sensing mechanisms that can be used.Furthermore,we delve into methods for immobilizing specific biorecognition elements,including enzymes,antibodies,and aptamers,onto electrode surfaces and how these sensors are used in real-world POCT settings.展开更多
Actual sea condition testing and inspection and evaluation method research are carried out for tidal energy devices to provide scientific and effective technical support for the ocean high-tech achievement transformat...Actual sea condition testing and inspection and evaluation method research are carried out for tidal energy devices to provide scientific and effective technical support for the ocean high-tech achievement transformation and marine renewable energy development. By analyzing three core indicators, including the power output characteristics of the tidal current device, the generating capacity, energy conversion efficiency, proposed the test contents and evaluation methods of indicators are proposed in this paper; and based on the research of wind farms, power quality testing and assessment methods of offshore tidal energy device are proposed; given the security access to the test contents of tidal current energy device, tidal current energy device running conditions in the testing ground are comprehensively assessed.展开更多
Objective To evaluate the effect of point-of-care hemoglobin/hematocrit(POC HGB/HCT) devices and intraoperative blood salvage on the amount of perioperative allogeneic blood transfusion and blood conservation in clini...Objective To evaluate the effect of point-of-care hemoglobin/hematocrit(POC HGB/HCT) devices and intraoperative blood salvage on the amount of perioperative allogeneic blood transfusion and blood conservation in clinical practice. Methods A total of 46 378 medical records of 22 selected hospitals were reviewed. The volume of allogeneic red blood cell and plasma, number of patients transfused, number of intraoperative autologous blood salvage, total volume of autologous blood transfusion, and amount of surgery in the year of 2011 and 2013 were tracked. Paired t-test was used in intra-group comparison, while t-test of two isolated samples carried out in inter-group comparison. P<0.05 was defined as statistically significant difference. Results In the hospitals where POC HGB/HCT device was used(n=9), the average allogeneic blood transfusion volume per 100 surgical cases in 2013 was significantly lower than that in 2011(39.86±20.20 vs. 30.49±17.50 Units, t=3.522, P=0.008). In the hospitals without POC HGB/HCT meter, the index was not significantly different between 2013 and 2011. The average allogeneic blood transfusion volume was significantly reduced in 2013 than in 2011 in the hospitals where intraoperative autologous blood salvage ratio [autologous transfusion volume/(autologous transfusion volume+allogeneic transfusion volume)] was increased(n=12, t=2.290, P=0.042). No significant difference of the above index was found in the hospitals whose autologous transfusion ratio did not grow. Conclusion Intraoperative usage of POC HGB/HCT devices and increasing autologous transfusion ratio could reduce perioperative allogeneic blood transfusion.展开更多
This paper presents a substructure online hybrid test system that is extensible for geographically distributed tests. This system consists of a set of devices conventionally used for cyclic tests to load the tested su...This paper presents a substructure online hybrid test system that is extensible for geographically distributed tests. This system consists of a set of devices conventionally used for cyclic tests to load the tested substructures onto the target displacement or the target force. Due to their robustness and portability, individual sets of conventional loading devices can be transported and reconfigured to realize physical loading in geographically remote laboratories. Another appealing feature is the flexible displacement-force mixed control that is particularly suitable for specimens having large disparities in stiffness during various performance stages. To conduct a substructure online hybrid test, an extensible framework is developed, which is equipped with a generalized interface to encapsulate each substructure. Multiple tested substructures and analyzed substructures using various structural program codes can be accommodated within the single framework, simply interfaced with the boundary displacements and forces. A coordinator program is developed to keep the boundaries among all substructures compatible and equilibrated. An Interuet-based data exchange scheme is also devised to transfer data among computers equipped with different software environments. A series of online hybrid tests are introduced, and the portability, flexibility, and extensibility of the online hybrid test system are demonstrated.展开更多
Background:Early diagnosis and classification of infections increase the cure rate while decreasing complications,which is significant for severe infections,especially for war surgery.However,traditional methods rely ...Background:Early diagnosis and classification of infections increase the cure rate while decreasing complications,which is significant for severe infections,especially for war surgery.However,traditional methods rely on laborious operations and bulky devices.On the other hand,point-of-care(POC)methods suffer from limited robustness and accuracy.Therefore,it is of urgent demand to develop POC devices for rapid and accurate diagnosis of infections to fulfill on-site militarized requirements.Methods:We developed a wave-shaped microfluidic chip(WMC)assisted multiplexed detection platform(WMC-MDP).WMC-MDP reduces detection time and improves repeatability through premixing of the samples and reaction of the reagents.We further combined the detection platform with the streptavidin–biotin(SA-B)amplified system to enhance the sensitivity while using chemiluminescence(CL)intensity as signal readout.We realized simultaneous detection of C-reactive protein(CRP),procalcitonin(PCT),and interleukin-6(IL-6)on the detection platform and evaluated the sensitivity,linear range,selectivity,and repeatability.Finally,we finished detecting 15 samples from volunteers and compared the results with commercial ELISA kits.Results:Detection of CRP,PCT,and IL-6 exhibited good linear relationships between CL intensities and concentrations in the range of 1.25–40μg/ml,0.4–12.8 ng/ml,and 50–1600 pg/ml,respectively.The limit of detection of CRP,PCT,and IL-6 were 0.54μg/ml,0.11 ng/ml,and 16.25 pg/ml,respectively.WMC-MDP is capable of good adequate selectivity and repeatability.The whole detection procedure takes only 22 min that meets the requirements of a POC device.Results of 15 samples from volunteers were consistent with the results detected by commercial ELISA kits.Conclusions:WMC-MDP allows simultaneous,rapid,and sensitive detection of CRP,PCT,and IL-6 with satisfactory selectivity and repeatability,requiring minimal manipulation.However,WMC-MDP takes advantage of being a microfluidic device showing the coefficients of variation less than 10%enabling WMC-MDP to be a type of point-of-care testing(POCT).Therefore,WMC-MDP provides a promising alternative to POCT of multiple biomarkers.We believe the practical application of WMC-MDP in militarized fields will revolutionize infection diagnosis for soldiers.展开更多
In this article,novel emulation strategies for the sectored multiple probe anechoic chamber(SMPAC)are proposed to enable the reliable evaluation of the massive multiple-input multiple-output(MIMO)device operating at b...In this article,novel emulation strategies for the sectored multiple probe anechoic chamber(SMPAC)are proposed to enable the reliable evaluation of the massive multiple-input multiple-output(MIMO)device operating at beamforming mode,which requires a realistic non-stationary channel environment.For the dynamic propagation emulation,an efficient closed-form probe weighting strategy minimizing the power angular spectrum(PAS)emulation errors is derived,substantially reducing the associated computational complexity.On the other hand,a novel probe selection algorithm is proposed to reproduce a more accurate fading environment.Various standard channel models and setup configurations are comprehensively simulated to validate the capacity of the proposed methods.The simulation results show that more competent active probes are selected with the proposed method compared to the conventional algorithms.Furthermore,the derived closedform probe weighting strategy offers identical accuracy to that obtained with complicated numerical optimization.Moreover,a realistic dynamic channel measured in an indoor environment is reconstructed with the developed methodologies,and 95.6%PAS similarity can be achieved with 6 active probes.The satisfactory results demonstrate that the proposed algorithms are suitable for arbitrary channel emulation.展开更多
750 kV substation of Riyue Mountain, Qinghai is a substation that annual average thunderstorm days are the maximum at the same volt- age level and altitude in the wodd. We detailedly described testing methods and step...750 kV substation of Riyue Mountain, Qinghai is a substation that annual average thunderstorm days are the maximum at the same volt- age level and altitude in the wodd. We detailedly described testing methods and steps of 6 characteristic parameters for grounding device of 750 kV substation by using 8000S comprehensive test system, and scientifically judged overall performance of the grounding device. Moreover, we espe- cially emphasized key and difficult points in testing process, providing reference for the majority of grounding test workers.展开更多
This work demonstrates a smartphone-based automated fluorescence analysis system(SAFAS)for point-of-care testing(POCT)of Hg(Ⅱ).This system consists of three modules.The smartphone module is used to provide an excitat...This work demonstrates a smartphone-based automated fluorescence analysis system(SAFAS)for point-of-care testing(POCT)of Hg(Ⅱ).This system consists of three modules.The smartphone module is used to provide an excitation light source,and to collect and analyze fluorescent images.The dark box module is applied to integrate the desired optical elements and offers a dark environment.The cost of the integrated dark box mainly includes the upper cover,box body,lower bottom,¯xture and some optical elements which is about$109.The chip module is used for fluorescence sensing,which is composed of an upper plate,bottom plate and cloth-based chip.Due to the integration of multiple smartphone functions,the SAFAS eliminates the need for additional power sources,light sources and analysis systems.The dark box and upper and bottom plates are made by 3D printer.The cloth-based chip(about$0.005 for each chip)is fabricated using the wax screenprinting technique,with no need for expensive and complex fabrication equipments.To our knowledge,the cloth-based microfluidic fluorescence detection method combined with smartphone functions is first reported.By using optimal conditions,the designed system can realize the quantitative detection of Hg(Ⅱ),which has a linear range of 0.001–100μgmL^(-1)and a detection limit of 0.5 ngmL^(-1).Additionally,the SAFAS has been successfully applied for detecting Hg(Ⅱ)in actual water samples,with recoveries of 100.1%–111%,RSDs of 3.88%–9.74%,and fast detection time of about 1 min.Obviously,the proposed SAFAS has the advantages of high sensitivity,wide dynamic range,acceptable reproducibility,good stability and low cost.Therefore,it is believed that the presented SAFAS has great potential to perform the POCT of Hg(II)in different water samples.展开更多
According to the demand of substation secondary device dynamic performance testing, a smart substation field testing technique based on recurrence principle is proposed in the paper, and the characteristics of smart s...According to the demand of substation secondary device dynamic performance testing, a smart substation field testing technique based on recurrence principle is proposed in the paper, and the characteristics of smart substation secondary device digitization and information sharing are used by the technique. The principle of testing technique is as follow: the digital simulation model is constructed on the basis of the substation’s actual construction, then the simulating data highly similar to substation’s actual electric quantity transient process is generated, at last, the substation digital secondary device can be tested by using data “recurrence” technique. The testing technique is verified and applied by constructing testing system, the application results show that the technique can effectively perform field test on the dynamic performance of digital secondary device, and the technique has good engineering implementation and application value.展开更多
Introduction: Our aim was to determine what patient volume, if any, in-laboratory testing provides results faster than Point-of-Care-Testing (POCT). Methods: To evaluate POCT effectiveness during high volume situation...Introduction: Our aim was to determine what patient volume, if any, in-laboratory testing provides results faster than Point-of-Care-Testing (POCT). Methods: To evaluate POCT effectiveness during high volume situations, POCT was compared to in-laboratory testing during busy periods with large numbers of patients. Our setting was an urban level 1 trauma center with an academic emergency medicine department (ED) and annual patient volume of 70,000. Patients seen requiring laboratory testing during peak volume between 11 a.m. and 7 p.m. were enrolled over a five-week period. One tube of blood was sent to the laboratory and the other tube was run in the ED using POCT. Turnaround time was recorded as time from when the tube was received to when the result was available. We also completed a time-motion study to assess the number of POCT machines that would be needed to process the entire average hourly hospital laboratory volume. Results: We collected 539 hematology and chemistry specimens. The POCT group was significantly faster than in-laboratory testing, with mean POCT [complete blood count (CBC) and chemistry] 3.5 minutes compared to in-laboratory CBC test time of 30.9 minutes and chemistry test time of 55 minutes. As the volume of samples peaked, there was a slight but insignificant decrease in POCT turnaround time. If POCT was used to process the entire average hospital laboratory volume which approached 54 samples an hour, 3 POCT machines would be necessary to maintain turnaround times. Conclusion: Even during ED high volume situations, POCT provided results significantly faster than in-laboratory testing.展开更多
We have presented a three dimensional optical protein chip that fulfills the demanding for point-of-care diagnostics in terms of ease-of-use (one step assay), miniaturization (5 μl). The artful combination of magneti...We have presented a three dimensional optical protein chip that fulfills the demanding for point-of-care diagnostics in terms of ease-of-use (one step assay), miniaturization (5 μl). The artful combination of magnetic nanoparticles on chip and total internal reflection imaging (TIRI) technology permits the sensitive and rapid detection of hs-CRP (high-sensitivity C-reactive protein). The whole test was complete within 10 min using “all in one step” assay with a limit of detection of 0.1 ng/mL hs-CRP. The measuring range for hs-CRP could be extended to 10 ng/mL. The chip can also be used to detect more parameters in blood samples.展开更多
This paper analyzed the reliability and put forward the reliability index of overload protection for moulded case circuit breaker. The success rate was adopted as its reliability index of overload protection. Based on...This paper analyzed the reliability and put forward the reliability index of overload protection for moulded case circuit breaker. The success rate was adopted as its reliability index of overload protection. Based on the reliability index and the reli- ability level, the reliability examination plan was analyzed and a test device for the overload protection of moulded case cir- cuit-breaker was developed. In the reliability test of overload protection, two power sources were used, which reduced the time of conversion and regulation between two different test currents in the overload protection test, which made the characteristic test more accurate. The test device was designed on the base of a Windows system, which made its operation simple and friendly.展开更多
The current study is based on the DEM computer simulation of three experimental test devices with different dimensions to determine the difference in the results of the formation of shear and repose angles that the pa...The current study is based on the DEM computer simulation of three experimental test devices with different dimensions to determine the difference in the results of the formation of shear and repose angles that the particles experience when grouped under the action of the gravitational force. In this respect, the experimental test devices with different height, width, and depth were geometrically modeled with iron pellet particles using morphology and a granulometric variation from 6 mm to 9 mm of equivalent diameter in its spherical shape. Depending on the results obtained, a reliable size of the experimental test device will be available to obtain the necessary data for a correct adjustment of the calibration parameters for the DEM simulation of mining-metallurgical processes that use granulated material of iron pellet.展开更多
A point-of-care test system has been studied in this paper.It was used to determine substances in blood such as Hemoglobin (HB),Aspartate Aminotransferase (AST),Creatine Kinase (CK) and so on.Based on the principle ...A point-of-care test system has been studied in this paper.It was used to determine substances in blood such as Hemoglobin (HB),Aspartate Aminotransferase (AST),Creatine Kinase (CK) and so on.Based on the principle of amperometric determination,the research on detecting weak current signals was carried on.At the same time as to the weak signals (nA level),magnifying,sampling and processing the signals were also studied.Controlled by ADUC824 and assisted by other units, every substance could be determined automatically and rapidly integrated with the corresponding biosensor.In the experiment, the minimum detectable current of the instrument (YT2005-1) is 0.2 nA.With regard to the 1 nA which the experiment demanded,it could be up to the mustard.And the system can provide results in 180 s with a long term stability.展开更多
In order to prevent unwanted excited vibrations and to secure better machining precision in large size heavy duty machine tools dynamic stiffness is one of the most desirable and critical properties. In the past decad...In order to prevent unwanted excited vibrations and to secure better machining precision in large size heavy duty machine tools dynamic stiffness is one of the most desirable and critical properties. In the past decades, many researches on machine tool stiffness test and evaluation methodology have been made. However any methodology for a Pin Turning Device (PTD), which is a special kind of turning lathe for machining big size crankshaft pins, is rarely found among them. This study proposes a test and evaluation process of stiffness of a PTD by measuring frequency response function at the tool center point (TCP). For conformance proving for the proposed methodology, stiffness of a PTD obtained by the proposed method with impact hammer test (IHT) has been compared with that determined by FEM.展开更多
A model test system with a dynamic load device for geotechnical engineering in cold regions is presented. This system consists of a model test tank, a refrigeration device and temperature controller, a dynamic load de...A model test system with a dynamic load device for geotechnical engineering in cold regions is presented. This system consists of a model test tank, a refrigeration device and temperature controller, a dynamic load device, together with sensors and data loggers for detecting stress, deformation, and temperature changes. The system can accommodate soil blocks up to 3 m in length, 2.5 m in width, and 1 m in height. The lowest temperature provided by the refrigeration device is -20 ℃. The maximum load provided by the dynamic load device is 100 kN and the vibration fi'equency of the dynamic load can range from 0.1 to 10 Hz. A number of waveforms, such as sine waves, rectangular waves, triangle waves, and other user-defined waves can be generated by the dynamic load device controller.展开更多
Pressure guide plate plays a certain role in the safe operation of elevator.Based on understanding the respective performance of new and old pressure guide plates,this paper analyses the problems existing in the origi...Pressure guide plate plays a certain role in the safe operation of elevator.Based on understanding the respective performance of new and old pressure guide plates,this paper analyses the problems existing in the original pressure guide plate.It also conducts stress analysis according to the function of pressure guide plate on elevator,and designs a new type of pressure guide plate combined with technological capability and equipment.According to the stress characteristics,a test device is designed and a comparative test is made between the new type of pressure guide plate and the old in order to test the reliability of the new type of pressure guide plate.The test proves that the new pressure guide plate of elevator can meet the requirements of product use and safe operation of elevator products.展开更多
The overuse of antibiotics has led to the severe contamination of water bodies,posing a considerable hazard to human health.Therefore,the development of an accurate and rapid point-of-care testing(POCT)platform for th...The overuse of antibiotics has led to the severe contamination of water bodies,posing a considerable hazard to human health.Therefore,the development of an accurate and rapid point-of-care testing(POCT)platform for the quantitative detection of antibiotics is necessary.In this study,Cerium oxide(CeO_(2))and Ferrosoferric oxide(Fe_(3)O_(4))nanoparticles were simultaneously encapsulated into N-doped nanofibrous carbon microspheres to form of a novel nanozyme(CeFe-NCMzyme)with a porous structure,high surface area,and N-doped carbon material properties,leading to a considerable enhancement of the peroxidase(POD)-like activity compared with that of the CeO_(2)or Fe3O4 nanoparticles alone.The POD-like activity of CeFe-NCMzyme can be quenched using L-Cysteine(Cys)and subsequently restored by the addition of a quinolone antibiotic(norfloxacin,NOR).Therefore,CeFe-NCMzyme was used as a colorimetric sensor to detect NOR via an“On-Off”model of POD-like activity.The sensor possessed a wide linear range of 0.05–20.0μM(R^(2)=0.9910)with a detection limit of 35.70 nM.Furthermore,a smartphone-assisted POCT platform with CeFe-NCMzyme was fabricated for quantitative detection of NOR based on RGB analysis.With the use of the POCT platform,a linear range of 0.1–20.0μM and a detection limit of 54.10 nM were obtained.The spiked recoveries in the water samples were ranged from 97.73%to 102.01%,and the sensor exhibited good accuracy and acceptable reliability.This study provides a portable POCT platform for the on-site and quantitative monitoring of quinolone antibiotics in real samples,particularly in resource-constrained settings.展开更多
Air pollution control devices (APCDs) are installed at coal-fired power plants for air pollutant regulation. Selective catalytic reduction (SCR) and wet flue gas desulftLrization (FGD) systems have the co-benefi...Air pollution control devices (APCDs) are installed at coal-fired power plants for air pollutant regulation. Selective catalytic reduction (SCR) and wet flue gas desulftLrization (FGD) systems have the co-benefits of air pollutant and mercury removal. Configuration and operational conditions of APCDs and mercury speciation affect mercury removal efficiently at coal-fired utilities. The Ontario Hydro Method (OHM) recommended by the U.S. Environmental Protection Agency (EPA) was used to determine mercury speciation simultaneously at five sampling locations through SCR-ESP-FGD at a 190 MW unit. Chlorine in coal had been suggested as a factor affecting the mercury speciation in flue gas; and low-chlorine coal was purported to produce less oxidized mercury (Hg^2+) and more elemental mercury (Hg^0) at the SCR inlet compared to higher chlorine coal. SCR could oxidize elemental mercury into oxidized mercury when SCR was in service, and oxidation efficiency reached 71.0%. Therefore, oxidized mercury removal efficiency was enhanced through a wet FGD system. In the non-ozone season, about 89.5%-96.8% of oxidized mercury was controlled, but only 54.9%-68.8% of the total mercury was captured through wet FGD. Oxidized mercury removal efficiency was 95.9%-98.0%, and there was a big difference in the total mercury removal efficiencies from 78.0% to 90.2% in the ozone season. Mercury mass balance was evaluated to validate reliability of OHM testing data, and the ratio of mercury input in the coal to mercury output at the stack was from 0.84 to 1.08.展开更多
基金supported by the National Research Foundation of Korea(No.2021R1A2B5B03001691).
文摘Point-of-care testing(POCT)is the practice of diagnosing and monitoring diseases where the patient is located,as opposed to traditional treatment conducted solely in a medical laboratory or other clinical setting.POCT has been less common in the recent past due to a lack of portable medical devices capable of facilitating effective medical testing.However,recent growth has occurred in this field due to advances in diagnostic technologies,device miniaturization,and progress in wearable electronics.Among these developments,electrochemical sensors have attracted interest in the POCT field due to their high sensitivity,compact size,and affordability.They are used in various applications,from disease diagnosis to health status monitoring.In this paper we explore recent advancements in electrochemical sensors,the methods of fabricating them,and the various types of sensing mechanisms that can be used.Furthermore,we delve into methods for immobilizing specific biorecognition elements,including enzymes,antibodies,and aptamers,onto electrode surfaces and how these sensors are used in real-world POCT settings.
基金supported by the Implementation Programs for Marine Renewable Energy Special Funds (GHME2012ZC02)
文摘Actual sea condition testing and inspection and evaluation method research are carried out for tidal energy devices to provide scientific and effective technical support for the ocean high-tech achievement transformation and marine renewable energy development. By analyzing three core indicators, including the power output characteristics of the tidal current device, the generating capacity, energy conversion efficiency, proposed the test contents and evaluation methods of indicators are proposed in this paper; and based on the research of wind farms, power quality testing and assessment methods of offshore tidal energy device are proposed; given the security access to the test contents of tidal current energy device, tidal current energy device running conditions in the testing ground are comprehensively assessed.
文摘Objective To evaluate the effect of point-of-care hemoglobin/hematocrit(POC HGB/HCT) devices and intraoperative blood salvage on the amount of perioperative allogeneic blood transfusion and blood conservation in clinical practice. Methods A total of 46 378 medical records of 22 selected hospitals were reviewed. The volume of allogeneic red blood cell and plasma, number of patients transfused, number of intraoperative autologous blood salvage, total volume of autologous blood transfusion, and amount of surgery in the year of 2011 and 2013 were tracked. Paired t-test was used in intra-group comparison, while t-test of two isolated samples carried out in inter-group comparison. P<0.05 was defined as statistically significant difference. Results In the hospitals where POC HGB/HCT device was used(n=9), the average allogeneic blood transfusion volume per 100 surgical cases in 2013 was significantly lower than that in 2011(39.86±20.20 vs. 30.49±17.50 Units, t=3.522, P=0.008). In the hospitals without POC HGB/HCT meter, the index was not significantly different between 2013 and 2011. The average allogeneic blood transfusion volume was significantly reduced in 2013 than in 2011 in the hospitals where intraoperative autologous blood salvage ratio [autologous transfusion volume/(autologous transfusion volume+allogeneic transfusion volume)] was increased(n=12, t=2.290, P=0.042). No significant difference of the above index was found in the hospitals whose autologous transfusion ratio did not grow. Conclusion Intraoperative usage of POC HGB/HCT devices and increasing autologous transfusion ratio could reduce perioperative allogeneic blood transfusion.
基金Public Benefit Research Foundation under Grant No.201108006Natural Science Foundation under Grant No.51161120360+2 种基金Heilongjiang Overseas Funding under Grant No.LC201002 of ChinaGrant-in-Aid for Scientific Research(Basic Research Category A,19206060)Japan Society for the Promotion of Science
文摘This paper presents a substructure online hybrid test system that is extensible for geographically distributed tests. This system consists of a set of devices conventionally used for cyclic tests to load the tested substructures onto the target displacement or the target force. Due to their robustness and portability, individual sets of conventional loading devices can be transported and reconfigured to realize physical loading in geographically remote laboratories. Another appealing feature is the flexible displacement-force mixed control that is particularly suitable for specimens having large disparities in stiffness during various performance stages. To conduct a substructure online hybrid test, an extensible framework is developed, which is equipped with a generalized interface to encapsulate each substructure. Multiple tested substructures and analyzed substructures using various structural program codes can be accommodated within the single framework, simply interfaced with the boundary displacements and forces. A coordinator program is developed to keep the boundaries among all substructures compatible and equilibrated. An Interuet-based data exchange scheme is also devised to transfer data among computers equipped with different software environments. A series of online hybrid tests are introduced, and the portability, flexibility, and extensibility of the online hybrid test system are demonstrated.
基金the National Natural Science Foundation of China(81902167,52075138)the Natural Science Foundation of Jiangsu Province(BK20190872).
文摘Background:Early diagnosis and classification of infections increase the cure rate while decreasing complications,which is significant for severe infections,especially for war surgery.However,traditional methods rely on laborious operations and bulky devices.On the other hand,point-of-care(POC)methods suffer from limited robustness and accuracy.Therefore,it is of urgent demand to develop POC devices for rapid and accurate diagnosis of infections to fulfill on-site militarized requirements.Methods:We developed a wave-shaped microfluidic chip(WMC)assisted multiplexed detection platform(WMC-MDP).WMC-MDP reduces detection time and improves repeatability through premixing of the samples and reaction of the reagents.We further combined the detection platform with the streptavidin–biotin(SA-B)amplified system to enhance the sensitivity while using chemiluminescence(CL)intensity as signal readout.We realized simultaneous detection of C-reactive protein(CRP),procalcitonin(PCT),and interleukin-6(IL-6)on the detection platform and evaluated the sensitivity,linear range,selectivity,and repeatability.Finally,we finished detecting 15 samples from volunteers and compared the results with commercial ELISA kits.Results:Detection of CRP,PCT,and IL-6 exhibited good linear relationships between CL intensities and concentrations in the range of 1.25–40μg/ml,0.4–12.8 ng/ml,and 50–1600 pg/ml,respectively.The limit of detection of CRP,PCT,and IL-6 were 0.54μg/ml,0.11 ng/ml,and 16.25 pg/ml,respectively.WMC-MDP is capable of good adequate selectivity and repeatability.The whole detection procedure takes only 22 min that meets the requirements of a POC device.Results of 15 samples from volunteers were consistent with the results detected by commercial ELISA kits.Conclusions:WMC-MDP allows simultaneous,rapid,and sensitive detection of CRP,PCT,and IL-6 with satisfactory selectivity and repeatability,requiring minimal manipulation.However,WMC-MDP takes advantage of being a microfluidic device showing the coefficients of variation less than 10%enabling WMC-MDP to be a type of point-of-care testing(POCT).Therefore,WMC-MDP provides a promising alternative to POCT of multiple biomarkers.We believe the practical application of WMC-MDP in militarized fields will revolutionize infection diagnosis for soldiers.
基金supported by National Natural Science Foundation of China(No.62090015,No.61821001)BUPT Excellent Ph.D.Students Foundation under Grant(CX2021216)。
文摘In this article,novel emulation strategies for the sectored multiple probe anechoic chamber(SMPAC)are proposed to enable the reliable evaluation of the massive multiple-input multiple-output(MIMO)device operating at beamforming mode,which requires a realistic non-stationary channel environment.For the dynamic propagation emulation,an efficient closed-form probe weighting strategy minimizing the power angular spectrum(PAS)emulation errors is derived,substantially reducing the associated computational complexity.On the other hand,a novel probe selection algorithm is proposed to reproduce a more accurate fading environment.Various standard channel models and setup configurations are comprehensively simulated to validate the capacity of the proposed methods.The simulation results show that more competent active probes are selected with the proposed method compared to the conventional algorithms.Furthermore,the derived closedform probe weighting strategy offers identical accuracy to that obtained with complicated numerical optimization.Moreover,a realistic dynamic channel measured in an indoor environment is reconstructed with the developed methodologies,and 95.6%PAS similarity can be achieved with 6 active probes.The satisfactory results demonstrate that the proposed algorithms are suitable for arbitrary channel emulation.
文摘750 kV substation of Riyue Mountain, Qinghai is a substation that annual average thunderstorm days are the maximum at the same volt- age level and altitude in the wodd. We detailedly described testing methods and steps of 6 characteristic parameters for grounding device of 750 kV substation by using 8000S comprehensive test system, and scientifically judged overall performance of the grounding device. Moreover, we espe- cially emphasized key and difficult points in testing process, providing reference for the majority of grounding test workers.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2019A1515011284)Guangzhou Basic and Applied Basic Research Foundation(202002030265).
文摘This work demonstrates a smartphone-based automated fluorescence analysis system(SAFAS)for point-of-care testing(POCT)of Hg(Ⅱ).This system consists of three modules.The smartphone module is used to provide an excitation light source,and to collect and analyze fluorescent images.The dark box module is applied to integrate the desired optical elements and offers a dark environment.The cost of the integrated dark box mainly includes the upper cover,box body,lower bottom,¯xture and some optical elements which is about$109.The chip module is used for fluorescence sensing,which is composed of an upper plate,bottom plate and cloth-based chip.Due to the integration of multiple smartphone functions,the SAFAS eliminates the need for additional power sources,light sources and analysis systems.The dark box and upper and bottom plates are made by 3D printer.The cloth-based chip(about$0.005 for each chip)is fabricated using the wax screenprinting technique,with no need for expensive and complex fabrication equipments.To our knowledge,the cloth-based microfluidic fluorescence detection method combined with smartphone functions is first reported.By using optimal conditions,the designed system can realize the quantitative detection of Hg(Ⅱ),which has a linear range of 0.001–100μgmL^(-1)and a detection limit of 0.5 ngmL^(-1).Additionally,the SAFAS has been successfully applied for detecting Hg(Ⅱ)in actual water samples,with recoveries of 100.1%–111%,RSDs of 3.88%–9.74%,and fast detection time of about 1 min.Obviously,the proposed SAFAS has the advantages of high sensitivity,wide dynamic range,acceptable reproducibility,good stability and low cost.Therefore,it is believed that the presented SAFAS has great potential to perform the POCT of Hg(II)in different water samples.
文摘According to the demand of substation secondary device dynamic performance testing, a smart substation field testing technique based on recurrence principle is proposed in the paper, and the characteristics of smart substation secondary device digitization and information sharing are used by the technique. The principle of testing technique is as follow: the digital simulation model is constructed on the basis of the substation’s actual construction, then the simulating data highly similar to substation’s actual electric quantity transient process is generated, at last, the substation digital secondary device can be tested by using data “recurrence” technique. The testing technique is verified and applied by constructing testing system, the application results show that the technique can effectively perform field test on the dynamic performance of digital secondary device, and the technique has good engineering implementation and application value.
文摘Introduction: Our aim was to determine what patient volume, if any, in-laboratory testing provides results faster than Point-of-Care-Testing (POCT). Methods: To evaluate POCT effectiveness during high volume situations, POCT was compared to in-laboratory testing during busy periods with large numbers of patients. Our setting was an urban level 1 trauma center with an academic emergency medicine department (ED) and annual patient volume of 70,000. Patients seen requiring laboratory testing during peak volume between 11 a.m. and 7 p.m. were enrolled over a five-week period. One tube of blood was sent to the laboratory and the other tube was run in the ED using POCT. Turnaround time was recorded as time from when the tube was received to when the result was available. We also completed a time-motion study to assess the number of POCT machines that would be needed to process the entire average hourly hospital laboratory volume. Results: We collected 539 hematology and chemistry specimens. The POCT group was significantly faster than in-laboratory testing, with mean POCT [complete blood count (CBC) and chemistry] 3.5 minutes compared to in-laboratory CBC test time of 30.9 minutes and chemistry test time of 55 minutes. As the volume of samples peaked, there was a slight but insignificant decrease in POCT turnaround time. If POCT was used to process the entire average hospital laboratory volume which approached 54 samples an hour, 3 POCT machines would be necessary to maintain turnaround times. Conclusion: Even during ED high volume situations, POCT provided results significantly faster than in-laboratory testing.
文摘We have presented a three dimensional optical protein chip that fulfills the demanding for point-of-care diagnostics in terms of ease-of-use (one step assay), miniaturization (5 μl). The artful combination of magnetic nanoparticles on chip and total internal reflection imaging (TIRI) technology permits the sensitive and rapid detection of hs-CRP (high-sensitivity C-reactive protein). The whole test was complete within 10 min using “all in one step” assay with a limit of detection of 0.1 ng/mL hs-CRP. The measuring range for hs-CRP could be extended to 10 ng/mL. The chip can also be used to detect more parameters in blood samples.
基金Project (No. E2005000039) supported by the Natural Science Foun-dation of Hebei Province, China
文摘This paper analyzed the reliability and put forward the reliability index of overload protection for moulded case circuit breaker. The success rate was adopted as its reliability index of overload protection. Based on the reliability index and the reli- ability level, the reliability examination plan was analyzed and a test device for the overload protection of moulded case cir- cuit-breaker was developed. In the reliability test of overload protection, two power sources were used, which reduced the time of conversion and regulation between two different test currents in the overload protection test, which made the characteristic test more accurate. The test device was designed on the base of a Windows system, which made its operation simple and friendly.
文摘The current study is based on the DEM computer simulation of three experimental test devices with different dimensions to determine the difference in the results of the formation of shear and repose angles that the particles experience when grouped under the action of the gravitational force. In this respect, the experimental test devices with different height, width, and depth were geometrically modeled with iron pellet particles using morphology and a granulometric variation from 6 mm to 9 mm of equivalent diameter in its spherical shape. Depending on the results obtained, a reliable size of the experimental test device will be available to obtain the necessary data for a correct adjustment of the calibration parameters for the DEM simulation of mining-metallurgical processes that use granulated material of iron pellet.
文摘A point-of-care test system has been studied in this paper.It was used to determine substances in blood such as Hemoglobin (HB),Aspartate Aminotransferase (AST),Creatine Kinase (CK) and so on.Based on the principle of amperometric determination,the research on detecting weak current signals was carried on.At the same time as to the weak signals (nA level),magnifying,sampling and processing the signals were also studied.Controlled by ADUC824 and assisted by other units, every substance could be determined automatically and rapidly integrated with the corresponding biosensor.In the experiment, the minimum detectable current of the instrument (YT2005-1) is 0.2 nA.With regard to the 1 nA which the experiment demanded,it could be up to the mustard.And the system can provide results in 180 s with a long term stability.
文摘In order to prevent unwanted excited vibrations and to secure better machining precision in large size heavy duty machine tools dynamic stiffness is one of the most desirable and critical properties. In the past decades, many researches on machine tool stiffness test and evaluation methodology have been made. However any methodology for a Pin Turning Device (PTD), which is a special kind of turning lathe for machining big size crankshaft pins, is rarely found among them. This study proposes a test and evaluation process of stiffness of a PTD by measuring frequency response function at the tool center point (TCP). For conformance proving for the proposed methodology, stiffness of a PTD obtained by the proposed method with impact hammer test (IHT) has been compared with that determined by FEM.
基金supported by the National Natural Science Foundation of China (No. 40971046,41023003,40901039)the Project from the State Key Laboratory of Frozen Soil Engineering of China (No. 09SF102003)
文摘A model test system with a dynamic load device for geotechnical engineering in cold regions is presented. This system consists of a model test tank, a refrigeration device and temperature controller, a dynamic load device, together with sensors and data loggers for detecting stress, deformation, and temperature changes. The system can accommodate soil blocks up to 3 m in length, 2.5 m in width, and 1 m in height. The lowest temperature provided by the refrigeration device is -20 ℃. The maximum load provided by the dynamic load device is 100 kN and the vibration fi'equency of the dynamic load can range from 0.1 to 10 Hz. A number of waveforms, such as sine waves, rectangular waves, triangle waves, and other user-defined waves can be generated by the dynamic load device controller.
文摘Pressure guide plate plays a certain role in the safe operation of elevator.Based on understanding the respective performance of new and old pressure guide plates,this paper analyses the problems existing in the original pressure guide plate.It also conducts stress analysis according to the function of pressure guide plate on elevator,and designs a new type of pressure guide plate combined with technological capability and equipment.According to the stress characteristics,a test device is designed and a comparative test is made between the new type of pressure guide plate and the old in order to test the reliability of the new type of pressure guide plate.The test proves that the new pressure guide plate of elevator can meet the requirements of product use and safe operation of elevator products.
基金This work was financially supported by Natural Science Foundation of Jiangxi Province(Grant Nos.:20224ACB203016 and 20224BAB203022)Science and Technology Research Project of Jiangxi Provincial Department of Education(Grant No.:GJJ2201322)+1 种基金the National Natural Science Foundation of China(Grant Nos.:32060577 and 32360619)Natural Science Foundation for Distinguished Young Scholars of Hunan Province(Gtant No.:2023JJ10099).
文摘The overuse of antibiotics has led to the severe contamination of water bodies,posing a considerable hazard to human health.Therefore,the development of an accurate and rapid point-of-care testing(POCT)platform for the quantitative detection of antibiotics is necessary.In this study,Cerium oxide(CeO_(2))and Ferrosoferric oxide(Fe_(3)O_(4))nanoparticles were simultaneously encapsulated into N-doped nanofibrous carbon microspheres to form of a novel nanozyme(CeFe-NCMzyme)with a porous structure,high surface area,and N-doped carbon material properties,leading to a considerable enhancement of the peroxidase(POD)-like activity compared with that of the CeO_(2)or Fe3O4 nanoparticles alone.The POD-like activity of CeFe-NCMzyme can be quenched using L-Cysteine(Cys)and subsequently restored by the addition of a quinolone antibiotic(norfloxacin,NOR).Therefore,CeFe-NCMzyme was used as a colorimetric sensor to detect NOR via an“On-Off”model of POD-like activity.The sensor possessed a wide linear range of 0.05–20.0μM(R^(2)=0.9910)with a detection limit of 35.70 nM.Furthermore,a smartphone-assisted POCT platform with CeFe-NCMzyme was fabricated for quantitative detection of NOR based on RGB analysis.With the use of the POCT platform,a linear range of 0.1–20.0μM and a detection limit of 54.10 nM were obtained.The spiked recoveries in the water samples were ranged from 97.73%to 102.01%,and the sensor exhibited good accuracy and acceptable reliability.This study provides a portable POCT platform for the on-site and quantitative monitoring of quinolone antibiotics in real samples,particularly in resource-constrained settings.
基金supported by the U.S.Agency for International Development (USAID) cooperation agreement(No.486-A-00-06-000140-00)
文摘Air pollution control devices (APCDs) are installed at coal-fired power plants for air pollutant regulation. Selective catalytic reduction (SCR) and wet flue gas desulftLrization (FGD) systems have the co-benefits of air pollutant and mercury removal. Configuration and operational conditions of APCDs and mercury speciation affect mercury removal efficiently at coal-fired utilities. The Ontario Hydro Method (OHM) recommended by the U.S. Environmental Protection Agency (EPA) was used to determine mercury speciation simultaneously at five sampling locations through SCR-ESP-FGD at a 190 MW unit. Chlorine in coal had been suggested as a factor affecting the mercury speciation in flue gas; and low-chlorine coal was purported to produce less oxidized mercury (Hg^2+) and more elemental mercury (Hg^0) at the SCR inlet compared to higher chlorine coal. SCR could oxidize elemental mercury into oxidized mercury when SCR was in service, and oxidation efficiency reached 71.0%. Therefore, oxidized mercury removal efficiency was enhanced through a wet FGD system. In the non-ozone season, about 89.5%-96.8% of oxidized mercury was controlled, but only 54.9%-68.8% of the total mercury was captured through wet FGD. Oxidized mercury removal efficiency was 95.9%-98.0%, and there was a big difference in the total mercury removal efficiencies from 78.0% to 90.2% in the ozone season. Mercury mass balance was evaluated to validate reliability of OHM testing data, and the ratio of mercury input in the coal to mercury output at the stack was from 0.84 to 1.08.