The purpose is to conduct a research in the energy variation of echo wave and the imaging effect caused by the aero bistatic SAR pointing errors. Based on the moving geometry configuration of aero bistatic SAR, a mode...The purpose is to conduct a research in the energy variation of echo wave and the imaging effect caused by the aero bistatic SAR pointing errors. Based on the moving geometry configuration of aero bistatic SAR, a model of beam pointing errors is built. Based on this, the azimuth Doppler frequency center estimation caused by these errors and the limitation to the beam pointing synchronization error are studied, and then the imaging result of different errors are analyzed. The computer's simulations are provided to prove the validity of the above analysis.展开更多
Wind loads have instantaneity and turbulence characteristics that will lead to pointing errors in antenna structures,and these errors cannot be ignored in high-frequency observations.Using the Tianma 65 m radio telesc...Wind loads have instantaneity and turbulence characteristics that will lead to pointing errors in antenna structures,and these errors cannot be ignored in high-frequency observations.Using the Tianma 65 m radio telescope(TMRT)as an example object,the pointing errors caused by wind loads are investigated using an accelerometer system.First,the resonant frequency range of the antenna structure is used for reference to acquire useful signals through the bandpass filtering method.Then,the direct current(DC)component of these signals is filtered out using the fast discrete Fourier transform method,and the baseline of the acceleration is corrected using the least-squares method.Finally,the acceleration integral is solved approximately using the discrete trapezoidal area method,and the structural vibration displacement of the antenna is determined using a double integral of acceleration.The pointing errors are then obtained based on the displacement relationship between the primary and subreflector surfaces.When the wind speed is 3.2 m/s,the antenna pitch angle is 61.7°and the wind direction angle is 80°,the generated pitch pointing error is 3.05'',and the azimuth pointing error is 1.14''.These results are consistent with those obtained via inclinometer measurements,thus validating the signal processing method and the pointing error calculation method proposed in this paper.The research methods and data analysis results reported here provide a basis for further wind-induced pointing error correction studies.展开更多
Conventional reliability-based design optimization (RBDO) requires to use the most probable point (MPP) method for a probabilistic analysis of the reliability constraints. A new approach is presented, called as th...Conventional reliability-based design optimization (RBDO) requires to use the most probable point (MPP) method for a probabilistic analysis of the reliability constraints. A new approach is presented, called as the minimum error point (MEP) method or the MEP based method, for reliability-based design optimization, whose idea is to minimize the error produced by approximating performance functions. The MEP based method uses the first order Taylor's expansion at MEP instead of MPP. Examples demonstrate that the MEP based design optimization can ensure product reliability at the required level, which is very imperative for many important engineering systems. The MEP based reliability design optimization method is feasible and is considered as an alternative for solving reliability design optimization problems. The MEP based method is more robust than the commonly used MPP based method for some irregular performance functions.展开更多
In this paper, a class of generalized strongly nonlinear quasivariational inclusions are studied. By using the properties of the resolvent operator associated with a maximal monotone; mapping in Hilbert space, an exis...In this paper, a class of generalized strongly nonlinear quasivariational inclusions are studied. By using the properties of the resolvent operator associated with a maximal monotone; mapping in Hilbert space, an existence theorem of solutions for generalized strongly nonlinear quasivariational inclusion is established and a new proximal point algorithm with errors is suggested for finding approximate solutions which strongly converge to the exact solution of the generalized strongly, nonlinear quasivariational inclusion. As special cases, some known results in this field are also discussed.展开更多
Traditional cubature Kalman filter(CKF)is a preferable tool for the inertial navigation system(INS)/global positioning system(GPS)integration under Gaussian noises.The CKF,however,may provide a significantly biased es...Traditional cubature Kalman filter(CKF)is a preferable tool for the inertial navigation system(INS)/global positioning system(GPS)integration under Gaussian noises.The CKF,however,may provide a significantly biased estimate when the INS/GPS system suffers from complex non-Gaussian disturbances.To address this issue,a robust nonlinear Kalman filter referred to as cubature Kalman filter under minimum error entropy with fiducial points(MEEF-CKF)is proposed.The MEEF-CKF behaves a strong robustness against complex nonGaussian noises by operating several major steps,i.e.,regression model construction,robust state estimation and free parameters optimization.More concretely,a regression model is constructed with the consideration of residual error caused by linearizing a nonlinear function at the first step.The MEEF-CKF is then developed by solving an optimization problem based on minimum error entropy with fiducial points(MEEF)under the framework of the regression model.In the MEEF-CKF,a novel optimization approach is provided for the purpose of determining free parameters adaptively.In addition,the computational complexity and convergence analyses of the MEEF-CKF are conducted for demonstrating the calculational burden and convergence characteristic.The enhanced robustness of the MEEF-CKF is demonstrated by Monte Carlo simulations on the application of a target tracking with INS/GPS integration under complex nonGaussian noises.展开更多
This paper investigates the performance of multi-hop Free Space Optical(FSO) communications using serial Decode-and-Forward(DF) relay transmissions.A statistical model for the optical intensity fluctuation at the rece...This paper investigates the performance of multi-hop Free Space Optical(FSO) communications using serial Decode-and-Forward(DF) relay transmissions.A statistical model for the optical intensity fluctuation at the receiver due to the combined effects of atmospheric turbulence-induced fading,mis alignment fading and pass-loss is presented.Under given weather and mis alignment conditions,a closed-form analytical expression for the end-to-end outage probability of serial Decode-and-Forward(DF) multi-hop FSO communications is derived.Numerical results show that the serial DF multi-hop transmission is a promising technology to enhance the performance of FSO communications.Moreover,the derived analytical expression can provide close approximations to the simulation results.展开更多
In laser-pointing-related applications,when only the centroid of a laser spot is considered,then the position and angular errors of the laser beam are often coupled together.In this study,the decoupling of the positio...In laser-pointing-related applications,when only the centroid of a laser spot is considered,then the position and angular errors of the laser beam are often coupled together.In this study,the decoupling of the position and angular errors is achieved from one single spot image by utilizing a neural network technique.In particular,the successful application of the neural network technique relies on novel experimental procedures,including using an appropriate small-focal-length lens and tilting the detector,to physically enlarge the contrast of different spots.This technique,with the corresponding new system design,may prove to be instructive in the future design of laser-pointing-related systems.展开更多
The ionosphere is one of the major error sources in Global Navigation Satellite System (GNSS) posi- tioning, navigation and timing. Estimating the ionospheric delays precisely is of great interest in the GNSS commun...The ionosphere is one of the major error sources in Global Navigation Satellite System (GNSS) posi- tioning, navigation and timing. Estimating the ionospheric delays precisely is of great interest in the GNSS community. To date, GNSS observables for ionospheric estimation are most commonly based on carrier phase smoothed code measurements. However, leveling errors, which affect the performance of ionospheric modeling and differential code bias (DCB) estimation, exist in the carrier phase smoothed code observations. Such leveling errors are caused by the multipath and the short-term variation of DCB. To reduce these leveling errors, this paper investigates and estimates the ionospheric delays based on carrier phase measurements without the leveling errors. The line-of-sight ionospheric observables with high precision are calculated using precise point positioning (PPP) techniques, in which carrier phase measurements are the principal observables. Ionosphere-free and UofC PPP models are applied and compared for their effectiveness to minimize the leveling errors. To assess the leveling errors, single difference of ionospheric observables for a short baseline is examined. Results show that carrier phase- derived ionospheric observables from PPP techniques can effectively reduce the leveling errors. Furthermore, we compared the PPP ionosphere estimation model with the conventional carrier phase smoothed code method to assess the bias consistency and investigate the biases in the ionospheric observables.展开更多
The full aperture complex amplitude transmittance function of a multi-level diffraction lens with mask- alignment errors was derived based on scalar diffraction theory. The point spread function (PSF) was calculated...The full aperture complex amplitude transmittance function of a multi-level diffraction lens with mask- alignment errors was derived based on scalar diffraction theory. The point spread function (PSF) was calculated by the Kirchhoff diffraction integral. It is found that the radius of the Airy disk increases with the increase of the error in the direction of misalignment, and the image center shifts along the direction of misalignment. A fourlevel diffractive lens with a diameter of 80 mm was fabricated, and its PSF and diffraction efficiency of +1st order were calculated and measured. The distribution of PSF is consistent with the calculated results, and the tested diffraction efficiency is slightly smaller than the calculated value; the relative error is 5.71%.展开更多
We analyzed the performance of a freespace optical(FSO)system in this study,considering the combined effects of atmospheric turbulence,fog absorption,and pointing errors.The impacts of atmospheric turbulence and foggy...We analyzed the performance of a freespace optical(FSO)system in this study,considering the combined effects of atmospheric turbulence,fog absorption,and pointing errors.The impacts of atmospheric turbulence and foggy absorption were modeled using the Fisher-Snedecor F distribution and the Gamma distribution,respectively.Next,we derived the probability density function(PDF)and cumulative probability density function of the optical system under these combined effects.Based on these statistical findings,closed-form expressions for various system metrics,such as outage probability,average bit error rate(BER),and ergodic capacity,were derived.Furthermore,we used a deep neural network(DNN)to predict the ergodic capacity of the system,achieving reduced running time and improved accuracy.Finally,the accuracy of the prediction results was validated by comparing them with the analytical results.展开更多
This paper investigates the reliability problem of airborne free-space optical(FSO)communications,and a hybrid FSO/radio frequency(RF)communication system with parallel transmission is proposed,where the data stream i...This paper investigates the reliability problem of airborne free-space optical(FSO)communications,and a hybrid FSO/radio frequency(RF)communication system with parallel transmission is proposed,where the data stream is transmitted over both FSO and RF links simultaneously.Further,to combat channel fading,maximal ratio combining is utilized at the receiver for combining received signals from both links.The performances of the proposed system are analytically derived in terms of the outage probability and the average bite-error rate(BER).Numerical results show that the proposed hybrid FSO/RF system with parallel transmission outperforms a single airborne FSO or a single RF link,which provides technical guidance for designing reliable high-speed airborne communication systems.展开更多
Background Optical Quality Analysis System II (OQAS, Visiometrics, Terrassa, Spain) that uses double-pass (DP) technique is the only commercially available device that allows objective measurement of ocular retina...Background Optical Quality Analysis System II (OQAS, Visiometrics, Terrassa, Spain) that uses double-pass (DP) technique is the only commercially available device that allows objective measurement of ocular retinal image quality. This study aimed to evaluate the impact of spectacle lenses on the ocular optical quality parameters and the validity of the optometer within OQAS. Methods Seventy eyes of healthy volunteers were enrolled. Optical quality measurements were performed using OQAS with an artificial pupil diameter of 4.0 mm. Three consecutive measurements were obtained from spectacle correction corresponding to subjective refraction and from the OQAS built-in optometer separately. The modulation transfer function cutoff frequency, the Strehl ratio, the width of the point spread function (PSF) at 10% of its maximal height (PSF10), and the width of the PSF at 50% of its maximal height (PSF50) were analyzed. Results There was no significant difference in any of the parameters between the spectacle correction and the optometer correction (all P 〉0.05, paired t-test). A good agreement was found between both the methods and a good intraobserver repeatability in both the correction methods. Difference in best focus between two methods was the only parameter associated significantly with optical quality parameter differences. Best focus difference, built-in optometer correction with or without external cylindrical lens, and age were associated significantly with PSF10 difference. No linear correlation between refractive status and optical quality measurement difference was observed. A hyperopic bias (best focus difference of (0.50±0.44) D) and a relatively better optical quality using spectacle correction in high myopia group were found. Conclusions OQAS based on DP system is a clinically reliable instrument. In patients with high myopia, measurements using built-in optometer correction should be considered and interpreted with caution.展开更多
文摘The purpose is to conduct a research in the energy variation of echo wave and the imaging effect caused by the aero bistatic SAR pointing errors. Based on the moving geometry configuration of aero bistatic SAR, a model of beam pointing errors is built. Based on this, the azimuth Doppler frequency center estimation caused by these errors and the limitation to the beam pointing synchronization error are studied, and then the imaging result of different errors are analyzed. The computer's simulations are provided to prove the validity of the above analysis.
基金provided by the TMRT operators during the observations.This work was supported by the National Key Basic Research and Development Program(2018YFA0404702)the National Natural Science Foundation of China(U1631114,11873015,and 11203062)+2 种基金the CAS Key Technology Talent Program,the Knowledge Innovation Program of CAS(KJCX1-YW-18)the Scientific Program of Shanghai Municipality(08DZ1160100)the Key Laboratory for Radio Astronomy of CAS,the Key Laboratory of Planetary Sciences of CAS,and the CAS Scholarship.
文摘Wind loads have instantaneity and turbulence characteristics that will lead to pointing errors in antenna structures,and these errors cannot be ignored in high-frequency observations.Using the Tianma 65 m radio telescope(TMRT)as an example object,the pointing errors caused by wind loads are investigated using an accelerometer system.First,the resonant frequency range of the antenna structure is used for reference to acquire useful signals through the bandpass filtering method.Then,the direct current(DC)component of these signals is filtered out using the fast discrete Fourier transform method,and the baseline of the acceleration is corrected using the least-squares method.Finally,the acceleration integral is solved approximately using the discrete trapezoidal area method,and the structural vibration displacement of the antenna is determined using a double integral of acceleration.The pointing errors are then obtained based on the displacement relationship between the primary and subreflector surfaces.When the wind speed is 3.2 m/s,the antenna pitch angle is 61.7°and the wind direction angle is 80°,the generated pitch pointing error is 3.05'',and the azimuth pointing error is 1.14''.These results are consistent with those obtained via inclinometer measurements,thus validating the signal processing method and the pointing error calculation method proposed in this paper.The research methods and data analysis results reported here provide a basis for further wind-induced pointing error correction studies.
基金This project is supported by National Natural Science Foundation of China(No.50575072)Outstanding Youth Fund of Hunan Education Department, China (No.04B007).
文摘Conventional reliability-based design optimization (RBDO) requires to use the most probable point (MPP) method for a probabilistic analysis of the reliability constraints. A new approach is presented, called as the minimum error point (MEP) method or the MEP based method, for reliability-based design optimization, whose idea is to minimize the error produced by approximating performance functions. The MEP based method uses the first order Taylor's expansion at MEP instead of MPP. Examples demonstrate that the MEP based design optimization can ensure product reliability at the required level, which is very imperative for many important engineering systems. The MEP based reliability design optimization method is feasible and is considered as an alternative for solving reliability design optimization problems. The MEP based method is more robust than the commonly used MPP based method for some irregular performance functions.
文摘In this paper, a class of generalized strongly nonlinear quasivariational inclusions are studied. By using the properties of the resolvent operator associated with a maximal monotone; mapping in Hilbert space, an existence theorem of solutions for generalized strongly nonlinear quasivariational inclusion is established and a new proximal point algorithm with errors is suggested for finding approximate solutions which strongly converge to the exact solution of the generalized strongly, nonlinear quasivariational inclusion. As special cases, some known results in this field are also discussed.
基金supported by the Fundamental Research Funds for the Central Universities(xzy022020045)the National Natural Science Foundation of China(61976175)。
文摘Traditional cubature Kalman filter(CKF)is a preferable tool for the inertial navigation system(INS)/global positioning system(GPS)integration under Gaussian noises.The CKF,however,may provide a significantly biased estimate when the INS/GPS system suffers from complex non-Gaussian disturbances.To address this issue,a robust nonlinear Kalman filter referred to as cubature Kalman filter under minimum error entropy with fiducial points(MEEF-CKF)is proposed.The MEEF-CKF behaves a strong robustness against complex nonGaussian noises by operating several major steps,i.e.,regression model construction,robust state estimation and free parameters optimization.More concretely,a regression model is constructed with the consideration of residual error caused by linearizing a nonlinear function at the first step.The MEEF-CKF is then developed by solving an optimization problem based on minimum error entropy with fiducial points(MEEF)under the framework of the regression model.In the MEEF-CKF,a novel optimization approach is provided for the purpose of determining free parameters adaptively.In addition,the computational complexity and convergence analyses of the MEEF-CKF are conducted for demonstrating the calculational burden and convergence characteristic.The enhanced robustness of the MEEF-CKF is demonstrated by Monte Carlo simulations on the application of a target tracking with INS/GPS integration under complex nonGaussian noises.
基金supported by National Key Basic Research Program of China(973 Program)under Grant No.2010CB328000National Natural Science Foundation of China under Grant No.61073168,60972023,61102068+7 种基金China Postdoctoral Science Foundation funded project under Grant No.20110490389Research Fund of National Mobile Communications Research Laboratory,Southeast University under Grant No.2010A06the Open Research Fund of National Mobile Communication Research Laboratory,Southeast University under Grant No.2010D01National Science and Technology Important Special Project under Grant No.2010ZX03003-002,2010ZX03003-004the Open research fund of the State Key Laboratory of Integrated Services Networks,Xidian University under Grant No.ISN12-11NUAA Research Funding under Grant No.NS2011013the Open Research Fund of State Key Laboratory of Advance Optical Communication Systems and Networks under Grant No.2008SH06the Startup Fund of Nanjing University of Aeronautics and Astronautics and Fundation of Graduate Innovation Center in NUAA
文摘This paper investigates the performance of multi-hop Free Space Optical(FSO) communications using serial Decode-and-Forward(DF) relay transmissions.A statistical model for the optical intensity fluctuation at the receiver due to the combined effects of atmospheric turbulence-induced fading,mis alignment fading and pass-loss is presented.Under given weather and mis alignment conditions,a closed-form analytical expression for the end-to-end outage probability of serial Decode-and-Forward(DF) multi-hop FSO communications is derived.Numerical results show that the serial DF multi-hop transmission is a promising technology to enhance the performance of FSO communications.Moreover,the derived analytical expression can provide close approximations to the simulation results.
文摘In laser-pointing-related applications,when only the centroid of a laser spot is considered,then the position and angular errors of the laser beam are often coupled together.In this study,the decoupling of the position and angular errors is achieved from one single spot image by utilizing a neural network technique.In particular,the successful application of the neural network technique relies on novel experimental procedures,including using an appropriate small-focal-length lens and tilting the detector,to physically enlarge the contrast of different spots.This technique,with the corresponding new system design,may prove to be instructive in the future design of laser-pointing-related systems.
文摘The ionosphere is one of the major error sources in Global Navigation Satellite System (GNSS) posi- tioning, navigation and timing. Estimating the ionospheric delays precisely is of great interest in the GNSS community. To date, GNSS observables for ionospheric estimation are most commonly based on carrier phase smoothed code measurements. However, leveling errors, which affect the performance of ionospheric modeling and differential code bias (DCB) estimation, exist in the carrier phase smoothed code observations. Such leveling errors are caused by the multipath and the short-term variation of DCB. To reduce these leveling errors, this paper investigates and estimates the ionospheric delays based on carrier phase measurements without the leveling errors. The line-of-sight ionospheric observables with high precision are calculated using precise point positioning (PPP) techniques, in which carrier phase measurements are the principal observables. Ionosphere-free and UofC PPP models are applied and compared for their effectiveness to minimize the leveling errors. To assess the leveling errors, single difference of ionospheric observables for a short baseline is examined. Results show that carrier phase- derived ionospheric observables from PPP techniques can effectively reduce the leveling errors. Furthermore, we compared the PPP ionosphere estimation model with the conventional carrier phase smoothed code method to assess the bias consistency and investigate the biases in the ionospheric observables.
基金supported by the National Key R&D Program of China(No.2016YFB0500200)the Key Program of Chinese Academy of Sciences(No.YA16K010)
文摘The full aperture complex amplitude transmittance function of a multi-level diffraction lens with mask- alignment errors was derived based on scalar diffraction theory. The point spread function (PSF) was calculated by the Kirchhoff diffraction integral. It is found that the radius of the Airy disk increases with the increase of the error in the direction of misalignment, and the image center shifts along the direction of misalignment. A fourlevel diffractive lens with a diameter of 80 mm was fabricated, and its PSF and diffraction efficiency of +1st order were calculated and measured. The distribution of PSF is consistent with the calculated results, and the tested diffraction efficiency is slightly smaller than the calculated value; the relative error is 5.71%.
基金This research was funded by the National Natural Science Foundation of China under Grants 62271202,62027802,and 61831008the Key Research and Development Program of Zhejiang Province under Grant 2023C01003in part by the Open Foundation of State Key Laboratory of Integrated Services Networks Xidian University under Grant ISN23-01.
文摘We analyzed the performance of a freespace optical(FSO)system in this study,considering the combined effects of atmospheric turbulence,fog absorption,and pointing errors.The impacts of atmospheric turbulence and foggy absorption were modeled using the Fisher-Snedecor F distribution and the Gamma distribution,respectively.Next,we derived the probability density function(PDF)and cumulative probability density function of the optical system under these combined effects.Based on these statistical findings,closed-form expressions for various system metrics,such as outage probability,average bit error rate(BER),and ergodic capacity,were derived.Furthermore,we used a deep neural network(DNN)to predict the ergodic capacity of the system,achieving reduced running time and improved accuracy.Finally,the accuracy of the prediction results was validated by comparing them with the analytical results.
文摘This paper investigates the reliability problem of airborne free-space optical(FSO)communications,and a hybrid FSO/radio frequency(RF)communication system with parallel transmission is proposed,where the data stream is transmitted over both FSO and RF links simultaneously.Further,to combat channel fading,maximal ratio combining is utilized at the receiver for combining received signals from both links.The performances of the proposed system are analytically derived in terms of the outage probability and the average bite-error rate(BER).Numerical results show that the proposed hybrid FSO/RF system with parallel transmission outperforms a single airborne FSO or a single RF link,which provides technical guidance for designing reliable high-speed airborne communication systems.
文摘Background Optical Quality Analysis System II (OQAS, Visiometrics, Terrassa, Spain) that uses double-pass (DP) technique is the only commercially available device that allows objective measurement of ocular retinal image quality. This study aimed to evaluate the impact of spectacle lenses on the ocular optical quality parameters and the validity of the optometer within OQAS. Methods Seventy eyes of healthy volunteers were enrolled. Optical quality measurements were performed using OQAS with an artificial pupil diameter of 4.0 mm. Three consecutive measurements were obtained from spectacle correction corresponding to subjective refraction and from the OQAS built-in optometer separately. The modulation transfer function cutoff frequency, the Strehl ratio, the width of the point spread function (PSF) at 10% of its maximal height (PSF10), and the width of the PSF at 50% of its maximal height (PSF50) were analyzed. Results There was no significant difference in any of the parameters between the spectacle correction and the optometer correction (all P 〉0.05, paired t-test). A good agreement was found between both the methods and a good intraobserver repeatability in both the correction methods. Difference in best focus between two methods was the only parameter associated significantly with optical quality parameter differences. Best focus difference, built-in optometer correction with or without external cylindrical lens, and age were associated significantly with PSF10 difference. No linear correlation between refractive status and optical quality measurement difference was observed. A hyperopic bias (best focus difference of (0.50±0.44) D) and a relatively better optical quality using spectacle correction in high myopia group were found. Conclusions OQAS based on DP system is a clinically reliable instrument. In patients with high myopia, measurements using built-in optometer correction should be considered and interpreted with caution.