We establish the pointwise approximation theorems for the combinations of Bernstein polynomials by the rth Ditzian-Totik modulus of smoothness wФ^r(f, t) where Ф is an admissible step-weight function. An equivalen...We establish the pointwise approximation theorems for the combinations of Bernstein polynomials by the rth Ditzian-Totik modulus of smoothness wФ^r(f, t) where Ф is an admissible step-weight function. An equivalence relation between the derivatives of these polynomials and the smoothness of functions is also obtained.展开更多
The object of this paper is to establish the pointwise estimations of approximation of functions in C^1 and their derivatives by Hermite interpolation polynomials. The given orders have been proved to be exact in gen-...The object of this paper is to establish the pointwise estimations of approximation of functions in C^1 and their derivatives by Hermite interpolation polynomials. The given orders have been proved to be exact in gen- eral.展开更多
Recently some classical operator quasi-interpolants were introduced to obtain much faster convergence. We consider left Gamma quasi-interpolants and give a pointwise simultaneous approximation equivalence theorem with...Recently some classical operator quasi-interpolants were introduced to obtain much faster convergence. We consider left Gamma quasi-interpolants and give a pointwise simultaneous approximation equivalence theorem with ωφλ^2r(f,t)∞ by means of unified the classical modulus and Ditzian-Totick modulus.展开更多
The purpose of this paper is to characterize the pointwise rate of convergence for the combinations of Szász-Mirakjan operators using Ditzian-Totik modulus of smoothness.
Let G be an open subset in the extended complex plane and let A(G) denote the algebra of all functions analytic on G and continuous on G. We call a domain multi-nicely connected if there is a circular domain W and a...Let G be an open subset in the extended complex plane and let A(G) denote the algebra of all functions analytic on G and continuous on G. We call a domain multi-nicely connected if there is a circular domain W and a conformal map ~ from W onto G such that the boundary value function of φ is univalent almost everywhere with respect to the arclength on aW. Suppose that every component of G is finitely connected and none of the components of G have single point boundary components. We show that for every bounded analytic function on G to be the pointwise limit of a bounded sequence of functions in A(G), it is necessary and sufficient that each component of G is multi-nicely connected and the harmonic measures of G are mutually singular. This generalizes the corresponding result of Davie for the case when the components of G are simply connected.展开更多
基金The research is supported by Zhejiang Provincial Natural Science Foundation of China
文摘We establish the pointwise approximation theorems for the combinations of Bernstein polynomials by the rth Ditzian-Totik modulus of smoothness wФ^r(f, t) where Ф is an admissible step-weight function. An equivalence relation between the derivatives of these polynomials and the smoothness of functions is also obtained.
文摘The object of this paper is to establish the pointwise estimations of approximation of functions in C^1 and their derivatives by Hermite interpolation polynomials. The given orders have been proved to be exact in gen- eral.
基金the NSF of Zhejiang Province(102005)the Foundation of Key Discipline of ZhejiangProvince(2005)
文摘Recently some classical operator quasi-interpolants were introduced to obtain much faster convergence. We consider left Gamma quasi-interpolants and give a pointwise simultaneous approximation equivalence theorem with ωφλ^2r(f,t)∞ by means of unified the classical modulus and Ditzian-Totick modulus.
文摘The purpose of this paper is to characterize the pointwise rate of convergence for the combinations of Szász-Mirakjan operators using Ditzian-Totik modulus of smoothness.
文摘Let G be an open subset in the extended complex plane and let A(G) denote the algebra of all functions analytic on G and continuous on G. We call a domain multi-nicely connected if there is a circular domain W and a conformal map ~ from W onto G such that the boundary value function of φ is univalent almost everywhere with respect to the arclength on aW. Suppose that every component of G is finitely connected and none of the components of G have single point boundary components. We show that for every bounded analytic function on G to be the pointwise limit of a bounded sequence of functions in A(G), it is necessary and sufficient that each component of G is multi-nicely connected and the harmonic measures of G are mutually singular. This generalizes the corresponding result of Davie for the case when the components of G are simply connected.