期刊文献+
共找到62,415篇文章
< 1 2 250 >
每页显示 20 50 100
A functional tacrolimus-releasing nerve wrap for enhancing nerve regeneration following surgical nerve repair
1
作者 Simeon C.Daeschler Katelyn J.W.So +7 位作者 Konstantin Feinberg Marina Manoraj Jenny Cheung Jennifer Zhang Kaveh Mirmoeini JPaul Santerre Tessa Gordon Gregory HBorschel 《Neural Regeneration Research》 SCIE CAS 2025年第1期291-304,共14页
Axonal regeneration following surgical nerve repair is slow and often incomplete,resulting in poor functional recovery which sometimes contributes to lifelong disability.Currently,there are no FDA-approved therapies a... Axonal regeneration following surgical nerve repair is slow and often incomplete,resulting in poor functional recovery which sometimes contributes to lifelong disability.Currently,there are no FDA-approved therapies available to promote nerve regeneration.Tacrolimus accelerates axonal regeneration,but systemic side effects presently outweigh its potential benefits for peripheral nerve surgery.The authors describe herein a biodegradable polyurethane-based drug delivery system for the sustained local release of tacrolimus at the nerve repair site,with suitable properties for scalable production and clinical application,aiming to promote nerve regeneration and functional recovery with minimal systemic drug exposure.Tacrolimus is encapsulated into co-axially electrospun polycarbonate-urethane nanofibers to generate an implantable nerve wrap that releases therapeutic doses of bioactive tacrolimus over 31 days.Size and drug loading are adjustable for applications in small and large caliber nerves,and the wrap degrades within 120 days into biocompatible byproducts.Tacrolimus released from the nerve wrap promotes axon elongation in vitro and accelerates nerve regeneration and functional recovery in preclinical nerve repair models while off-target systemic drug exposure is reduced by 80%compared with systemic delivery.Given its surgical suitability and preclinical efficacy and safety,this system may provide a readily translatable approach to support axonal regeneration and recovery in patients undergoing nerve surgery. 展开更多
关键词 BIODEGRADABLE local drug delivery nerve injury nerve regeneration nerve wrap TACROLIMUS
下载PDF
Advances in therapies using mesenchymal stem cells and their exosomes for treatment of peripheral nerve injury:state of the art and future perspectives
2
作者 Fatima Aldali Chunchu Deng +1 位作者 Mingbo Nie Hong Chen 《Neural Regeneration Research》 SCIE CAS 2025年第11期3151-3171,共21页
“Peripheral nerve injury”refers to damage or trauma affecting nerves outside the brain and spinal cord.Peripheral nerve injury results in movements or sensation impairments,and represents a serious public health pro... “Peripheral nerve injury”refers to damage or trauma affecting nerves outside the brain and spinal cord.Peripheral nerve injury results in movements or sensation impairments,and represents a serious public health problem.Although severed peripheral nerves have been effectively joined and various therapies have been offered,recovery of sensory or motor functions remains limited,and efficacious therapies for complete repair of a nerve injury remain elusive.The emerging field of mesenchymal stem cells and their exosome-based therapies hold promise for enhancing nerve regeneration and function.Mesenchymal stem cells,as large living cells responsive to the environment,secrete various factors and exosomes.The latter are nano-sized extracellular vesicles containing bioactive molecules such as proteins,microRNA,and messenger RNA derived from parent mesenchymal stem cells.Exosomes have pivotal roles in cell-to-cell communication and nervous tissue function,offering solutions to changes associated with cell-based therapies.Despite ongoing investigations,mesenchymal stem cells and mesenchymal stem cell-derived exosome-based therapies are in the exploratory stage.A comprehensive review of the latest preclinical experiments and clinical trials is essential for deep understanding of therapeutic strategies and for facilitating clinical translation.This review initially explores current investigations of mesenchymal stem cells and mesenchymal stem cell-derived exosomes in peripheral nerve injury,exploring the underlying mechanisms.Subsequently,it provides an overview of the current status of mesenchymal stem cell and exosomebased therapies in clinical trials,followed by a comparative analysis of therapies utilizing mesenchymal stem cells and exosomes.Finally,the review addresses the limitations and challenges associated with use of mesenchymal stem cell-derived exosomes,offering potential solutions and guiding future directions. 展开更多
关键词 clinical trials EXOSOME extracellular vesicles mesenchymal stem cells nerve regeneration peripheral nerve injury pre-clinical experiments
下载PDF
Role of transforming growth factor-βin peripheral nerve regeneration 被引量:4
3
作者 Zihan Ding Maorong Jiang +4 位作者 Jiaxi Qian Dandan Gu Huiyuan Bai Min Cai Dengbing Yao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期380-386,共7页
Injuries caused by trauma and neurodegenerative diseases can damage the peripheral nervous system and cause functional deficits.Unlike in the central nervous system,damaged axons in peripheral nerves can be induced to... Injuries caused by trauma and neurodegenerative diseases can damage the peripheral nervous system and cause functional deficits.Unlike in the central nervous system,damaged axons in peripheral nerves can be induced to regenerate in response to intrinsic cues after reprogramming or in a growth-promoting microenvironment created by Schwann cells.However,axon regeneration and repair do not automatically result in the restoration of function,which is the ultimate therapeutic goal but also a major clinical challenge.Transforming growth factor(TGF)is a multifunctional cytokine that regulates various biological processes including tissue repair,embryo development,and cell growth and differentiation.There is accumulating evidence that TGF-βfamily proteins participate in peripheral nerve repair through various factors and signaling pathways by regulating the growth and transformation of Schwann cells;recruiting specific immune cells;controlling the permeability of the blood-nerve barrier,thereby stimulating axon growth;and inhibiting remyelination of regenerated axons.TGF-βhas been applied to the treatment of peripheral nerve injury in animal models.In this context,we review the functions of TGF-βin peripheral nerve regeneration and potential clinical applications. 展开更多
关键词 MYELINATION nerve repair and regeneration NEURITE NEUROINFLAMMATION peripheral nerve injury Schwann cell transforming growth factor-β Wallerian degeneration
下载PDF
Outcomes and efficacy of magnetic resonance imaging-compatible sacral nerve stimulator for management of fecal incontinence: A multi-institutional study 被引量:1
4
作者 Binit Katuwal Amy Thorsen +5 位作者 Kunal Kochar Ryba Bhullar Ray King Ernesto Raul Drelichman Vijay K Mittal Jasneet Singh Bhullar 《World Journal of Radiology》 2024年第2期32-39,共8页
BACKGROUND Fecal incontinence(FI)is an involuntary passage of fecal matter which can have a significant impact on a patient’s quality of life.Many modalities of treatment exist for FI.Sacral nerve stimulation is a we... BACKGROUND Fecal incontinence(FI)is an involuntary passage of fecal matter which can have a significant impact on a patient’s quality of life.Many modalities of treatment exist for FI.Sacral nerve stimulation is a well-established treatment for FI.Given the increased need of magnetic resonance imaging(MRI)for diagnostics,the In-terStim which was previously used in sacral nerve stimulation was limited by MRI incompatibility.Medtronic MRI-compatible InterStim was approved by the United States Food and Drug Administration in August 2020 and has been widely used.AIM To evaluate the efficacy,outcomes and complications of the MRI-compatible InterStim.METHODS Data of patients who underwent MRI-compatible Medtronic InterStim placement at UPMC Williamsport,University of Minnesota,Advocate Lutheran General Hospital,and University of Wisconsin-Madison was pooled and analyzed.Patient demographics,clinical features,surgical techniques,complications,and outcomes were analyzed.Strengthening the Reporting of Observational studies in Epidemiology(STROBE)cross-sectional reporting guidelines were used.RESULTS Seventy-three patients had the InterStim implanted.The mean age was 63.29±12.2 years.Fifty-seven(78.1%)patients were females and forty-two(57.5%)patients had diabetes.In addition to incontinence,overlapping symptoms included diarrhea(23.3%),fecal urgency(58.9%),and urinary incontinence(28.8%).Fifteen(20.5%)patients underwent Peripheral Nerve Evaluation before proceeding to definite implant placement.Thirty-two(43.8%)patients underwent rechargeable InterStim placement.Three(4.1%)patients needed removal of the implant.Migration of the external lead connection was observed in 7(9.6%)patients after the stage I procedure.The explanation for one patient was due to infection.Seven(9.6%)patients had other complications like nerve pain,hematoma,infection,lead fracture,and bleeding.The mean follow-up was 6.62±3.5 mo.Sixty-eight(93.2%)patients reported significant improvement of symptoms on follow-up evaluation.CONCLUSION This study shows promising results with significant symptom improvement,good efficacy and good patient outcomes with low complication rates while using MRI compatible InterStim for FI.Further long-term follow-up and future studies with a larger patient population is recommended. 展开更多
关键词 Fecal incontinence Sacral nerve stimulation InterStim Magnetic resonance imaging Sacral neuromodulation
下载PDF
Assessment of rehabilitation treatment for patients with acute poisoning-induced toxic encephalopathy
5
作者 Hao Wu Yu Zhou +5 位作者 Baogen Xu Wen Liu Jinquan Li Chuhan Zhou Hao Sun Yu Zheng 《World Journal of Emergency Medicine》 SCIE CAS CSCD 2024年第6期441-447,共7页
BACKGROUND:Poisoned patients often suffer damage to multiple systems,and those experiencing central nervous system disorders present more severe conditions,prolonged hospital stays,and increased mortality rates.We aim... BACKGROUND:Poisoned patients often suffer damage to multiple systems,and those experiencing central nervous system disorders present more severe conditions,prolonged hospital stays,and increased mortality rates.We aimed to assess the efficacy of rehabilitation interventions for patients with toxic encephalopathy.METHODS:This retrospective,observational,comparative cohort study was performed at the teaching hospital affiliated of Nanjing Medical University,from October 2020 to December 2022.Patients who met the diagnostic criteria for toxic encephalopathy and exclusion criteria were included,and patients were divided into three subgroups according to Glasgow Coma Scale(GCS).Demographic and clinical characteristics were collected.The effect of the rehabilitation intervention on patients were assessed in the improvement of consciousness status(Glasgow Coma Scale[GCS]score),muscle strength and movement and swallowing function(Fugl-Meyer Assessment[FMA]scale,Water Swallow Test[WST],and Standardized Swallowing Assessment[SSA]).Subgroup analysis was based on different toxic species.RESULTS:Out of the 464 patients with toxic encephalopathy,184 cases received rehabilitation treatments.For the severe toxic encephalopathy patients,patients without rehabilitation intervention have a 2.21 times higher risk of death compared to patients with rehabilitation intervention(Hazard ratio[HR]=2.21).Subgroup analysis revealed that rehabilitation intervention significantly increased the survival rate of patients with pesticide poisoning(P=0.02),while no significant improvement was observed in patients with drug/biological agent poisoning(P=0.44).After rehabilitation intervention,significant improvement in GCS and FMA were observed in severe patients with toxic encephalopathy(P<0.01).CONCLUSION:Active rehabilitation intervention for patients exposed to poisons that can potentially cause toxic encephalopathy may improve the prognosis and reduce the mortality rate in clinical practice. 展开更多
关键词 Toxic encephalopathy poisoning REHABILITATION EFFICACY
下载PDF
Polyethylene glycol fusion repair of severed rat sciatic nerves reestablishes axonal continuity and reorganizes sensory terminal fields in the spinal cord 被引量:1
6
作者 Emily A.Hibbard Liwen Zhou +5 位作者 Cathy Z.Yang Karthik Venkudusamy Yessenia Montoya Alexa Olivarez George D.Bittner Dale R.Sengelaub 《Neural Regeneration Research》 SCIE CAS 2025年第7期2095-2107,共13页
Peripheral nerve injuries result in the rapid degeneration of distal nerve segments and immediate loss of motor and sensory functions;behavioral recovery is typically poor.We used a plasmalemmal fusogen,polyethylene g... Peripheral nerve injuries result in the rapid degeneration of distal nerve segments and immediate loss of motor and sensory functions;behavioral recovery is typically poor.We used a plasmalemmal fusogen,polyethylene glycol(PEG),to immediately fuse closely apposed open ends of severed proximal and distal axons in rat sciatic nerves.We have previously reported that sciatic nerve axons repaired by PEG-fusion do not undergo Wallerian degeneration,and PEG-fused animals exhibit rapid(within 2–6 weeks)and extensive locomotor recovery.Furthermore,our previous report showed that PEG-fusion of severed sciatic motor axons was non-specific,i.e.,spinal motoneurons in PEG-fused animals were found to project to appropriate as well as inappropriate target muscles.In this study,we examined the consequences of PEG-fusion for sensory axons of the sciatic nerve.Young adult male and female rats(Sprague–Dawley)received either a unilateral single cut or ablation injury to the sciatic nerve and subsequent repair with or without(Negative Control)the application of PEG.Compound action potentials recorded immediately after PEG-fusion repair confirmed conduction across the injury site.The success of PEG-fusion was confirmed through Sciatic Functional Index testing with PEG-fused animals showing improvement in locomotor function beginning at 35 days postoperatively.At 2–42 days postoperatively,we anterogradely labeled sensory afferents from the dorsal aspect of the hindpaw following bilateral intradermal injection of wheat germ agglutinin conjugated horseradish peroxidase.PEG-fusion repair reestablished axonal continuity.Compared to unoperated animals,labeled sensory afferents ipsilateral to the injury in PEG-fused animals were found in the appropriate area of the dorsal horn,as well as inappropriate mediolateral and rostrocaudal areas.Unexpectedly,despite having intact peripheral nerves,similar reorganizations of labeled sensory afferents were also observed contralateral to the injury and repair.This central reorganization may contribute to the improved behavioral recovery seen after PEG-fusion repair,supporting the use of this novel repair methodology over currently available treatments. 展开更多
关键词 AXOTOMY dorsal horn peripheral nerve injury PLASTICITY polyethylene glycol(PEG) sciatic nerve sensory terminals wheat germ agglutinin horseradish peroxidase
下载PDF
Harnessing endothelial cells and vascularization strategies for nerve regeneration
7
作者 Papon Muangsanit Poppy Smith 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2337-2338,共2页
Peripheral nerves are essential components of the human body’s communication system,transmitting signals between the central nervous system and various body parts.Damage resulting from trauma or disease can result in... Peripheral nerves are essential components of the human body’s communication system,transmitting signals between the central nervous system and various body parts.Damage resulting from trauma or disease can result in debilitating sensory and motor deficits.Nerve injuries,particularly those resulting in significant gaps in the nerve tissue,pose a formidable challenge for clinicians and researchers.Despite their limitations,including limited availability and donor site morbidity,nerve autografts remain the clinical gold standard for treating nerve injuries. 展开更多
关键词 INJURIES nerveS DONOR
下载PDF
Privacy-Preserving Large-Scale AI Models for Intelligent Railway Transportation Systems:Hierarchical Poisoning Attacks and Defenses in Federated Learning
8
作者 Yongsheng Zhu Chong Liu +8 位作者 Chunlei Chen Xiaoting Lyu Zheng Chen Bin Wang Fuqiang Hu Hanxi Li Jiao Dai Baigen Cai Wei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1305-1325,共21页
The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving mechanisms into AI models to protect sensitive information and enhance system efficiency.Federated learning o... The development of Intelligent Railway Transportation Systems necessitates incorporating privacy-preserving mechanisms into AI models to protect sensitive information and enhance system efficiency.Federated learning offers a promising solution by allowing multiple clients to train models collaboratively without sharing private data.However,despite its privacy benefits,federated learning systems are vulnerable to poisoning attacks,where adversaries alter local model parameters on compromised clients and send malicious updates to the server,potentially compromising the global model’s accuracy.In this study,we introduce PMM(Perturbation coefficient Multiplied by Maximum value),a new poisoning attack method that perturbs model updates layer by layer,demonstrating the threat of poisoning attacks faced by federated learning.Extensive experiments across three distinct datasets have demonstrated PMM’s ability to significantly reduce the global model’s accuracy.Additionally,we propose an effective defense method,namely CLBL(Cluster Layer By Layer).Experiment results on three datasets have confirmed CLBL’s effectiveness. 展开更多
关键词 PRIVACY-PRESERVING intelligent railway transportation system federated learning poisoning attacks DEFENSES
下载PDF
A Prediction Model for Detecting Dysthyroid Optic Neuropathy Based on Clinical Factors and Imaging Markers of the Optic Nerve and Cerebrospinal Fluid in the Optic Nerve Sheath
9
作者 Hong-yu WU Ban LUO +7 位作者 Gang YUAN Qiu-xia WANG Ping LIU Ya-li ZHAO Lin-han ZHAI Wen-zhi LV Jing ZHANG Lang CHEN 《Current Medical Science》 SCIE CAS 2024年第4期827-832,共6页
Objective This study aimed to develop and test a model for predicting dysthyroid optic neuropathy(DON)based on clinical factors and imaging markers of the optic nerve and cerebrospinal fluid(CSF)in the optic nerve she... Objective This study aimed to develop and test a model for predicting dysthyroid optic neuropathy(DON)based on clinical factors and imaging markers of the optic nerve and cerebrospinal fluid(CSF)in the optic nerve sheath.Methods This retrospective study included patients with thyroid-associated ophthalmopathy(TAO)without DON and patients with TAO accompanied by DON at our hospital.The imaging markers of the optic nerve and CSF in the optic nerve sheath were measured on the water-fat images of each patient and,together with clinical factors,were screened by Least absolute shrinkage and selection operator.Subsequently,we constructed a prediction model using multivariate logistic regression.The accuracy of the model was verified using receiver operating characteristic curve analysis.Results In total,80 orbits from 44 DON patients and 90 orbits from 45 TAO patients were included in our study.Two variables(optic nerve subarachnoid space and the volume of the CSF in the optic nerve sheath)were found to be independent predictive factors and were included in the prediction model.In the development cohort,the mean area under the curve(AUC)was 0.994,with a sensitivity of 0.944,specificity of 0.967,and accuracy of 0.901.Moreover,in the validation cohort,the AUC was 0.960,the sensitivity was 0.889,the specificity was 0.893,and the accuracy was 0.890.Conclusions A combined model was developed using imaging data of the optic nerve and CSF in the optic nerve sheath,serving as a noninvasive potential tool to predict DON. 展开更多
关键词 dysthyroid optic neuropathy magnetic resonance imaging water-fat sequence optic nerve optic nerve subarachnoid space
下载PDF
Chitosan-based thermosensitive hydrogel with long-term release of murine nerve growth factor for neurotrophic keratopathy
10
作者 Jie Wu Yulei Huang +10 位作者 Hanrui Yu Kaixiu Li Shifeng Zhang Guoqing Qiao Xiao Liu Hongmei Duan Yifei Huang Kwok-Fai So Zhaoyang Yang Xiaoguang Li Liqiang Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期680-686,共7页
Neurotrophic keratopathy is a persistent defect of the corneal epithelium,with or without stromal ulceration,due to corneal nerve deficiency caused by a variety of etiologies.The treatment options for neurotrophic ker... Neurotrophic keratopathy is a persistent defect of the corneal epithelium,with or without stromal ulceration,due to corneal nerve deficiency caused by a variety of etiologies.The treatment options for neurotrophic keratopathy are limited.In this study,an ophthalmic solution was constructed from a chitosan-based thermosensitive hydrogel with long-term release of murine nerve growth factor(CTH-mNGF).Its effectiveness was evaluated in corneal denervation(CD)mice and patients with neurotrophic keratopathy.In the preclinical setting,CTH-mNGF was assessed in a murine corneal denervation model.CTH-mNGF was transparent,thermosensitive,and ensured sustained release of mNGF for over 20 hours on the ocular surface,maintaining the local mNGF concentration around 1300 pg/mL in vivo.Corneal denervation mice treated with CTH-mNGF for 10 days showed a significant increase in corneal nerve area and total corneal nerve length compared with non-treated and CTH treated mice.A subsequent clinical trial of CTH-mNGF was conducted in patients with stage 2 or 3 neurotrophic keratopathy.Patients received topical CTH-mNGF twice daily for 8 weeks.Fluorescein sodium images,Schirmer’s test,intraocular pressure,Cochet-Bonnet corneal perception test,and best corrected visual acuity were evaluated.In total,six patients(total of seven eyes)diagnosed with neurotrophic keratopathy were enrolled.After 8 weeks of CTH-mNGF treatment,all participants showed a decreased area of corneal epithelial defect,as stained by fluorescence.Overall,six out of seven eyes had fluorescence staining scores<5.Moreover,best corrected visual acuity,intraocular pressure,Schirmer’s test and Cochet-Bonnet corneal perception test results showed no significant improvement.An increase in corneal nerve density was observed by in vivo confocal microscopy after 8 weeks of CTH-mNGF treatment in three out of seven eyes.This study demonstrates that CTH-mNGF is transparent,thermosensitive,and has sustained-release properties.Its effectiveness in healing corneal epithelial defects in all eyes with neurotrophic keratopathy suggests CTH-mNGF has promising application prospects in the treatment of neurotrophic keratopathy,being convenient and cost effective. 展开更多
关键词 chitosan corneal reinnervation murine nerve growth factor neurotrophic keratopathy thermosensitive hydrogel
下载PDF
Mesenchymal stem cells for repairing glaucomatous optic nerve
11
作者 Bai-Yu Hu Mei Xin +2 位作者 Ming Chen Ping Yu Liu-Zhi Zeng 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第4期748-760,共13页
Glaucoma is a common and complex neurodegenerative disease characterized by progressive loss of retinal ganglion cells(RGCs)and axons.Currently,there is no effective method to address the cause of RGCs degeneration.Ho... Glaucoma is a common and complex neurodegenerative disease characterized by progressive loss of retinal ganglion cells(RGCs)and axons.Currently,there is no effective method to address the cause of RGCs degeneration.However,studies on neuroprotective strategies for optic neuropathy have increased in recent years.Cell replacement and neuroprotection are major strategies for treating glaucoma and optic neuropathy.Regenerative medicine research into the repair of optic nerve damage using stem cells has Received considerable attention.Stem cells possess the potential for multidirectional differentiation abilities and are capable of producing RGCfriendly microenvironments through paracrine effects.This article reviews a thorough researches of recent advances and approaches in stem cell repair of optic nerve injury,raising the controversies and unresolved issues surrounding the future of stem cells. 展开更多
关键词 stem cell GLAUCOMA retinal ganglion cell optic nerve axon regeneration
下载PDF
Advanced strategies for 3D-printed neural scaffolds:materials,structure,and nerve remodeling
12
作者 Jian He Liang Qiao +5 位作者 Jiuhong Li Junlin Lu Zhouping Fu Jiafang Chen Xiangchun Zhang Xulin Hu 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第5期747-770,共24页
Nerve regeneration holds significant potential in the treatment of various skeletal and neurological disorders to restore lost sensory and motor functions.The potential of nerve regeneration in ameliorating neurologic... Nerve regeneration holds significant potential in the treatment of various skeletal and neurological disorders to restore lost sensory and motor functions.The potential of nerve regeneration in ameliorating neurological diseases and injuries is critical to human health.Three-dimensional(3D)printing offers versatility and precision in the fabrication of neural scaffolds.Complex neural structures such as neural tubes and scaffolds can be fabricated via 3Dprinting.This reviewcomprehensively analyzes the current state of 3D-printed neural scaffolds and explores strategies to enhance their design.It highlights therapeutic strategies and structural design involving neural materials and stem cells.First,nerve regeneration materials and their fabrication techniques are outlined.The applications of conductive materials in neural scaffolds are reviewed,and their potential to facilitate neural signal transmission and regeneration is highlighted.Second,the progress in 3D-printed neural scaffolds applied to the peripheral and central nerves is comprehensively evaluated,and their potential to restore neural function and promote the recovery of different nervous systems is emphasized.In addition,various applications of 3D-printed neural scaffolds in peripheral and neurological diseases,as well as the design strategies of multifunctional biomimetic scaffolds,are discussed. 展开更多
关键词 nerve regeneration 3D printing based neural scaffolds BIOMATERIALS Nervous system Design strategies
下载PDF
Millimetric devices for nerve stimulation:a promising path towards miniaturization
13
作者 Ryan M.Dorrian Anna V.Leonard Antonio Lauto 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1702-1706,共5页
Nerve stimulation is a rapidly developing field,demonstrating positive outcomes across several conditions.Despite potential benefits,current nerve stimulation devices are large,complicated,and are powered via implante... Nerve stimulation is a rapidly developing field,demonstrating positive outcomes across several conditions.Despite potential benefits,current nerve stimulation devices are large,complicated,and are powered via implanted pulse generators.These facto rs necessitate invasive surgical implantation and limit potential applications.Reducing nerve stimulation devices to millimetric sizes would make these interventions less invasive and facilitate broader therapeutic applications.However,device miniaturization presents a serious engineering challenge.This review presents significant advancements from several groups that have overcome this challenge and developed millimetricsized nerve stimulation devices.These are based on antennas,mini-coils,magneto-electric and optoelectronic materials,or receive ultrasound power.We highlight key design elements,findings from pilot studies,and present several considerations for future applications of these devices. 展开更多
关键词 biomedical engineering deep brain stimulation electrical engineering electrical stimulation NEUROMODULATION peripheral nerve stimulation
下载PDF
Isotropic volumetric MRI for displaying cranial perineural spread of cranial nerve in nasopharyngeal carcinoma
14
作者 ZHENG Dechun XU Shugui +4 位作者 LAI Guojing HU Chunmiao CAO Xisheng FENG Meimei PENG Li 《中国医学影像技术》 CSCD 北大核心 2024年第8期1164-1169,共6页
Objective To observe the value of isotropic volumetric MRI for displaying perineural spread(PNS)of cranial nerve(CN)in nasopharyngeal carcinoma.Methods Eighty-seven patients with pathologically proven nasopharyngeal c... Objective To observe the value of isotropic volumetric MRI for displaying perineural spread(PNS)of cranial nerve(CN)in nasopharyngeal carcinoma.Methods Eighty-seven patients with pathologically proven nasopharyngeal carcinoma were prospectively enrolled.MR scanning,including three-dimensional liver acquisition with volume acceleration-flexible(3D LAVA_Flex)image,T2WI with fat suppression(T2WI-FS),T1WI,contrast enhancement(CE)T1WI-FS of nasopharynx and neck region were performed.The displaying rates of CN PNS were evaluated and compared between 3D LAVA_Flex and T2WI-FS,T1WI,CE-T1WI-FS at patient level,CN group level and neural level,respectively.Results The displaying rate of CN PNS in all 87 nasopharyngeal carcinoma patients by 3D LAVA_Flex sequence was 49.43%(43/87),higher than that of conventional MRI(30/87,34.48%,P=0.001).Among 59 patients with advanced nasopharyngeal carcinoma diagnosed with conventional sequences,the displaying rate of CN PNS was 71.19%(42/59)by 3D LAVA-Flex sequence,higher than that of conventional MRI(30/59,50.85%,P=0.001).At both patient level and posterior CN level,significant differences of the displaying rate of CN PNS were found between 3D LAVA-Flex sequence and T2WI-FS,T1WI,CE-T1WI-FS,while at CN level,the displaying rates of mandibular nerve PNS,CNⅨ—ⅪPNS in jugular foramen(P<0.05)and CNⅨ—ⅫPNS in carotid space of 3D LAVA_Flex sequence were all significantly higher than that of T2WI-FS,T1WI and CE-T1WI-FS(all P<0.05),of PNS of CNⅢ—Ⅴin cavernous sinus were higher than that of T2WI-FS(P<0.05),while of PNS of hypoglossal nerve were significantly higher than that of T2WI-FS and T1WI(both P<0.05).Conclusion 3D LAVA_Flex sequence could be used to effectively display CN PNS of nasopharyngeal carcinoma. 展开更多
关键词 nasopharyngeal neoplasm cranial nerve magnetic resonance imaging neoplasm metastasis prospective studies
下载PDF
Silk-based nerve guidance conduits with macroscopic holes modulate the vascularization of regenerating rat sciatic nerve
15
作者 Carina Hromada Patrick Heimel +10 位作者 Markus Kerbl LászlóGál Sylvia Nürnberger Barbara Schaedl James Ferguson Nicole Swiadek Xavier Monforte Johannes C.Heinzel Antal Nógrádi Andreas H.Teuschl-Woller David Hercher 《Neural Regeneration Research》 SCIE CAS 2025年第6期1789-1800,共12页
Peripheral nerve injuries induce a severe motor and sensory deficit. Since the availability of autologous nerve transplants for nerve repair is very limited, alternative treatment strategies are sought, including the ... Peripheral nerve injuries induce a severe motor and sensory deficit. Since the availability of autologous nerve transplants for nerve repair is very limited, alternative treatment strategies are sought, including the use of tubular nerve guidance conduits(tNGCs). However, the use of tNGCs results in poor functional recovery and central necrosis of the regenerating tissue, which limits their application to short nerve lesion defects(typically shorter than 3 cm). Given the importance of vascularization in nerve regeneration, we hypothesized that enabling the growth of blood vessels from the surrounding tissue into the regenerating nerve within the tNGC would help eliminate necrotic processes and lead to improved regeneration. In this study, we reported the application of macroscopic holes into the tubular walls of silk-based tNGCs and compared the various features of these improved silk^(+) tNGCs with the tubes without holes(silk^(–) tNGCs) and autologous nerve transplants in an 8-mm sciatic nerve defect in rats. Using a combination of micro-computed tomography and histological analyses, we were able to prove that the use of silk^(+) tNGCs induced the growth of blood vessels from the adjacent tissue to the intraluminal neovascular formation. A significantly higher number of blood vessels in the silk^(+) group was found compared with autologous nerve transplants and silk^(–), accompanied by improved axon regeneration at the distal coaptation point compared with the silk^(–) tNGCs at 7 weeks postoperatively. In the 15-mm(critical size) sciatic nerve defect model, we again observed a distinct ingrowth of blood vessels through the tubular walls of silk^(+) tNGCs, but without improved functional recovery at 12 weeks postoperatively. Our data proves that macroporous tNGCs increase the vascular supply of regenerating nerves and facilitate improved axonal regeneration in a short-defect model but not in a critical-size defect model. This study suggests that further optimization of the macroscopic holes silk^(+) tNGC approach containing macroscopic holes might result in improved grafting technology suitable for future clinical use. 展开更多
关键词 axon regeneration blood vessel functional recovery macroporous nerve lesion peripheral nerve repair sciatic nerve silk-based nerve guidance conduit VASCULARIZATION
下载PDF
A novel flexible nerve guidance conduit promotes nerve regeneration while providing excellent mechanical properties
16
作者 Tong Li Quhan Cheng +11 位作者 Jingai Zhang Boxin Liu Yu Shi Haoxue Wang Lijie Huang Su Zhang Ruixin Zhang Song Wang Guangxu Lu Peifu Tang Zhongyang Liu Kai Wang 《Neural Regeneration Research》 SCIE CAS 2025年第7期2084-2094,共11页
Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduit... Autografting is the gold standard for surgical repair of nerve defects>5 mm in length;however,autografting is associated with potential complications at the nerve donor site.As an alternative,nerve guidance conduits may be used.The ideal conduit should be flexible,resistant to kinks and lumen collapse,and provide physical cues to guide nerve regeneration.We designed a novel flexible conduit using electrospinning technology to create fibers on the innermost surface of the nerve guidance conduit and employed melt spinning to align them.Subsequently,we prepared disordered electrospun fibers outside the aligned fibers and helical melt-spun fibers on the outer wall of the electrospun fiber lumen.The presence of aligned fibers on the inner surface can promote the extension of nerve cells along the fibers.The helical melt-spun fibers on the outer surface can enhance resistance to kinking and compression and provide stability.Our novel conduit promoted nerve regeneration and functional recovery in a rat sciatic nerve defect model,suggesting that it has potential for clinical use in human nerve injuries. 展开更多
关键词 aligned fibers anti-kinking helical fibers nerve guidance conduit nerve regeneration peripheral nerve injury topological guidance
下载PDF
EZH2-dependent myelination following sciatic nerve injury
17
作者 Hui Zhu Li Mu +8 位作者 Xi Xu Tianyi Huang Ying Wang Siyuan Xu Yiting Wang Wencong Wang Zhiping Wang Hongkui Wang Chengbin Xue 《Neural Regeneration Research》 SCIE CAS 2025年第8期2382-2394,共13页
Demyelination and remyelination have been major focal points in the study of peripheral nerve regeneration following peripheral nerve injury.Notably,the gene regulatory network of regenerated myelin differs from that ... Demyelination and remyelination have been major focal points in the study of peripheral nerve regeneration following peripheral nerve injury.Notably,the gene regulatory network of regenerated myelin differs from that of native myelin.Silencing of enhancer of zeste homolog 2(EZH2)hinders the differentiation,maturation,and myelination of Schwann cells in vitro.To further determine the role of EZH2 in myelination and recovery post-peripheral nerve injury,conditional knockout mice lacking Ezh2 in Schwann cells(Ezh2^(fl/fl);Dhh-Cre and Ezh2^(fl/fl);Mpz-Cre)were generated.Our results show that a significant proportion of axons in the sciatic nerve of Ezh2-depleted mice remain unmyelinated.This highlights the crucial role of Ezh2 in initiating Schwann cell myelination.Furthermore,we observed that 21 days after inducing a sciatic nerve crush injury in these mice,most axons had remyelinated at the injury site in the control nerve,while Ezh2^(fl/fl);Mpz-Cre mice had significantly fewer remyelinated axons compared with their wild-type littermates.This suggests that the absence of Ezh2 in Schwann cells impairs myelin formation and remyelination.In conclusion,EZH2 has emerged as a pivotal regulatory factor in the process of demyelination and myelin regeneration following peripheral nerve injury.Modulating EZH2 activity during these processes may offer a promising therapeutic target for the treatment of peripheral nerve injuries. 展开更多
关键词 DEMYELINATION EZH2 MYELINATION peripheral nerve injury PRC2 REMYELINATION Schwann cells sciatic nerve crush sciatic nerve transection
下载PDF
Ultrasound-guided peripheral nerve blocks for anterior cutaneous nerve entrapment syndrome after robot-assisted gastrectomy: A case report
18
作者 Yukiko Saito Hirohisa Takeuchi +3 位作者 Joho Tokumine Ryuji Sawada Kunitaro Watanabe Tomoko Yorozu 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第8期2719-2723,共5页
BACKGROUND Anterior cutaneous nerve entrapment syndrome(ACNES)is a condition mani-festing with pain caused by strangulation of the anterior cutaneous branch of the lower intercostal nerves.This case report aims to pro... BACKGROUND Anterior cutaneous nerve entrapment syndrome(ACNES)is a condition mani-festing with pain caused by strangulation of the anterior cutaneous branch of the lower intercostal nerves.This case report aims to provide new insight into the selection of peripheral nerve blocks for the ACNES treatment.CASE SUMMARY A 66-year-old woman manifested ACNES after a robot-assisted distal gastrec-tomy.An ultrasound-guided rectal sheath block was effective for pain triggered by the port scar.However,the sudden severe pain,which radiated laterally from the previous site,remained.A transversus abdominis plane block was performed for the remaining pain and effectively relieved it.CONCLUSION In this case,the trocar port was inserted between the rectus and transverse abdominis muscles.The intercostal nerves might have been entrapped on both sides of the rectus and transversus abdominis muscles.Hence,rectus sheath and transverse abdominis plane blocks were required to achieve complete pain relief.To the best of our knowledge,this is the first report on use of a combination of rectus sheath and transverse abdominis plane blocks for pain relief in ACNES. 展开更多
关键词 Anterior cutaneous nerve entrapment syndrome Rectus sheath block Trans-verse abdominal plane block HYDRODISSECTION Robot-assisted gastrectomy Case report
下载PDF
Resting-state brain network remodeling after different nerve reconstruction surgeries:a functional magnetic resonance imaging study in brachial plexus injury rats
19
作者 Yunting Xiang Xiangxin Xing +6 位作者 Xuyun Hua Yuwen Zhang Xin Xue Jiajia Wu Mouxiong Zheng He Wang Jianguang Xu 《Neural Regeneration Research》 SCIE CAS 2025年第5期1495-1504,共10页
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev... Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery. 展开更多
关键词 brain functional networks end-to-end nerve transfer end-to-side nerve transfer independent component analysis nerve repair peripheral plexus injury resting-state functional connectivity
下载PDF
FK506 contributes to peripheral nerve regeneration by inhibiting neuroinflammatory responses and promoting neuron survival
20
作者 Yuhui Kou Zongxue Jin +3 位作者 Yusong Yuan Bo Ma Wenyong Xie Na Han 《Neural Regeneration Research》 SCIE CAS 2025年第7期2108-2115,共8页
FK506(Tacrolimus)is a systemic immunosuppressant approved by the U.S.Food and Drug Administration.FK506 has been shown to promote peripheral nerve regeneration,however,its precise mechanism of action and its pathways ... FK506(Tacrolimus)is a systemic immunosuppressant approved by the U.S.Food and Drug Administration.FK506 has been shown to promote peripheral nerve regeneration,however,its precise mechanism of action and its pathways remain unclear.In this study,we established a rat model of sciatic nerve injury and found that FK506 improved the morphology of the injured sciatic nerve,increased the numbers of motor and sensory neurons,reduced inflammatory responses,markedly improved the conduction function of the injured nerve,and promoted motor function recovery.These findings suggest that FK506 promotes peripheral nerve structure recovery and functional regeneration by reducing the intensity of inflammation after neuronal injury and increasing the number of surviving neurons. 展开更多
关键词 FK506 inflammation motor neurons nerve regeneration NEURON peripheral nerve injury sensory neurons
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部