Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles.As battery failures are often a...Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles.As battery failures are often associated with mechanical-thermal coupled behaviors,protective shielding materials with excellent mechanical robustness and flame-retardant properties are highly desired to mitigate thermal runaway.However,most of the thermal insulating materials are not strong enough to protect batteries from mechanical abuse,which is one of the most critical scenarios with catastrophic consequences.Here,inspired by wood,we have developed an effective approach to engineer a hierarchical nanocomposite via self-assembly of calcium silicate hydrate and polyvinyl alcohol polymer chains(referred as CSH wood).The versatile protective material CSH wood demonstrates an unprecedented combination of light weight(0.018 g cm-3),high stiffness(204 MPa in the axial direction),negative Poisson's ratio(-0.15),remarkable toughness(6.67×105 J m-3),superior thermal insulation(0.0204 W m-1 K-1 in the radial direction),and excellent fire retardancy(UL94-V0).When applied as a protective cover or a protective layer within battery packages,the tough CSH wood can resist high-impact load and block heat diffusion to block or delay the spread of fire,therefore significantly reducing the risk of property damage or bodily injuries caused by battery explosions.This work provides new pathways for fabricating advanced thermal insulating materials with large scalability and demonstrates great potential for the protection of electronic devices.展开更多
This paper proposes a three-dimensional(3D)Maltese cross metamaterial with negative Poisson’s ratio(NPR)and negative thermal expansion(NTE)adopted as the core layers in sandwich plates,and aims to explore the relatio...This paper proposes a three-dimensional(3D)Maltese cross metamaterial with negative Poisson’s ratio(NPR)and negative thermal expansion(NTE)adopted as the core layers in sandwich plates,and aims to explore the relations between the mechanical responses of sandwich composites and the NPR or NTE of the metamaterial.First,the NPR and NTE of the metamaterial are derived analytically based on energy conservation.The effective elastic modulus and mass density of the 3D metamaterial are obtained and validated by the finite element method(FEM).Subsequently,the general governing equation of the 3D sandwich plate under thermal environments is established based on Hamilton’s principle with the consideration of the von Kármán nonlinearity.The differential quadrature(DQ)FEM(DQFEM)is utilized to obtain the numerical solutions.It is shown that NPR and NTE can enhance the global stiffness of sandwich structures.The geometric parameters of the Maltese cross metamaterial significantly affect the responses of the thermal stress,natural frequency,and critical buckling load.展开更多
Two-dimensional(2D)antiferroelectric materials have raised great research interest over the last decade.Here,we reveal a type of 2D antiferroelectric(AFE)crystal where the AFE polarization direction can be switched by...Two-dimensional(2D)antiferroelectric materials have raised great research interest over the last decade.Here,we reveal a type of 2D antiferroelectric(AFE)crystal where the AFE polarization direction can be switched by a certain degree in the 2D plane.Such 2D functional materials are realized by stacking the exfoliated wurtzite(wz)monolayers with“self-healable”nature,which host strongly coupled ferroelasticity/antiferroelectricity and benign stability.The AFE candidates,i.e.,Zn X and Cd X(X=S,Se,Te),are all semiconductors with direct bandgap atΓpoint,which harbors switchable antiferroelectricity and ferroelasticity with low transition barriers,hidden spin polarization,as well as giant in-plane negative Poisson's ratio(NPR),enabling the co-tunability of hidden spin characteristics and auxetic magnitudes via AFE switching.The 2D AFE wz crystals provide a platform to probe the interplay of 2D antiferroelectricity,ferroelasticity,NPR,and spin effects,shedding new light on the rich physics and device design in wz semiconductors.展开更多
Mechanical metamaterials such as auxetic materials have attracted great interest due to their unusual properties that are dictated by their architectures.However,these architected materials usually have low stiffness ...Mechanical metamaterials such as auxetic materials have attracted great interest due to their unusual properties that are dictated by their architectures.However,these architected materials usually have low stiffness because of the bending or rotation deformation mechanisms in the microstructures.In this work,a convolutional neural network(CNN)based self-learning multi-objective optimization is performed to design digital composite materials.The CNN models have undergone rigorous training using randomly generated two-phase digital composite materials,along with their corresponding Poisson's ratios and stiffness values.Then the CNN models are used for designing composite material structures with the minimum Poisson's ratio at a given volume fraction constraint.Furthermore,we have designed composite materials with optimized stiffness while exhibiting a desired Poisson's ratio(negative,zero,or positive).The optimized designs have been successfully and efficiently obtained,and their validity has been confirmed through finite element analysis results.This self-learning multi-objective optimization model offers a promising approach for achieving comprehensive multi-objective optimization.展开更多
Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stre...Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.展开更多
AIM To assess the diagnostic value of FIB-4, aspartate aminotransferase-to-platelet ratio index(APRI), and liver stiffness measurement(LSM) in patients with hepatitis B virus infection who have persistently normal ala...AIM To assess the diagnostic value of FIB-4, aspartate aminotransferase-to-platelet ratio index(APRI), and liver stiffness measurement(LSM) in patients with hepatitis B virus infection who have persistently normal alanine transaminase(PNALT).METHODS We enrolled 245 patients with chronic hepatitis B: 95 in PNALT group, 86 in intermittently elevated alanine transaminase(PIALT1) group [alanine transaminase(ALT) within 1-2 × upper limit of normal value(ULN)], and 64 in PIALT2 group(ALT > 2 × ULN). All the patients received a percutaneous liver biopsy guided by ultrasonography. LSM, biochemical tests, and complete blood cell counts were performed.RESULTS The pathological examination revealed moderate inflammatory necrosis ratios of 16.81%(16/95), 32.56%(28/86), and 45.31%(28/64), and moderate liverfibrosis of 24.2%(23/95), 33.72%(29/86), and 43.75%(28/64) in the PNALT, PIALT1, and PIALT2 groups, respectively. The degrees of inflammation and liver fibrosis were significantly higher in the PIALT groups than in the PNALT group(P < 0.05). No significant difference was found in the areas under the curve(AUCs) between APRI and FIB-4 in the PNALT group; however, significant differences were found between APRI and LSM, and between FIB-4 and LSM in the PNALT group(P < 0.05 for both). In the PIALT1 and PIALT2 groups, no significant difference(P > 0.05) was found in AUCs for all comparisons(P > 0.05 for all). In the overall patients, a significant difference in the AUCs was found only between LSM and APRI(P < 0.05).CONCLUSION APRI and FIB-4 are not the ideal noninvasive hepatic fibrosis markers for PNALT patients. LSM is superior to APRI and FIB-4 in PNALT patients because of the influence of liver inflammation and necrosis.展开更多
The Raman depolarization ratios of gaseous CO2 in the spectral range of 1240-1430 cm-I are determined with a sensitive photoacoustic Raman spectroscopy, and more accurate data compared to the literature results are pr...The Raman depolarization ratios of gaseous CO2 in the spectral range of 1240-1430 cm-I are determined with a sensitive photoacoustic Raman spectroscopy, and more accurate data compared to the literature results are presented. The precision of the obtained depolarization ratio is achieved by measuring and fitting the dependence of the PARS signal intensity on the cross angle between the polarizations of two incident laser beams.展开更多
In the Southeast Margin of the Tibetan Plateau, low-velocity sedimentary layers that would significantly affect the accuracy of the H-κ stacking of receiver functions are widely distributed.In this study, we use tele...In the Southeast Margin of the Tibetan Plateau, low-velocity sedimentary layers that would significantly affect the accuracy of the H-κ stacking of receiver functions are widely distributed.In this study, we use teleseismic waveform data of 475 events from 97 temporary broadband seismometers deployed by ChinArray Phase I to obtain crustal thicknesses and Poisson's ratios within the Chuxiong-Simao Basin and adjacent area, employing an improved method in which the receiver functions are processed through a resonance-removal filter, and the H-κ stacking is time-corrected.Results show that the crustal thickness ranges from 30 to 55 km in the study area, reaching its thickest value in the northwest and thinning toward southwest, southeast and northeast.The apparent variation of crustal thickness around the Red River Fault supports the view of southeastern escape of the Tibetan Plateau.Relatively thin crustal thickness in the zone between Chuxiong City and the Red River Fault indicates possible uplift of mantle in this area.The positive correlation between crustal thickness and Poisson's ratio is likely to be related to lower crust thickening.Comparison of results obtained from different methods shows that the improved method used in our study can effectively remove the reverberation effect of sedimentary layers.展开更多
In this article,dynamic method and static method of testing Poisson's ratio of OSB(Oriented Strand Board)were proposed.Through modal and static numerical analyses,the position where the transverse stress is equal ...In this article,dynamic method and static method of testing Poisson's ratio of OSB(Oriented Strand Board)were proposed.Through modal and static numerical analyses,the position where the transverse stress is equal to zero was determined.The binary linear regression method was applied to express the gluing position of the strain gauge as a relational express ion that depended on the length-width ratio and width-thickness ratio of the canti-lever plate.Then the longitudinal and transverse Poisson's ratios of OSB were mea sured by the given dynamic and static methods.In addition,the test results of OSB Poisson's ratio were analyzed with the probability distribution of random variables.The results showed that using the proposed dynamic method and static method,the test results for longitudinal and transverse Poisson's ratios of OSB were quite consistent,despite the gluing position of the strain gauges being different.And these OSB Poisson's ratios were accorded with that obtained by the axial tensile method and the four-point bending method.OSB longitudinal and transverse Poisson's ratios followed Weibull distribution.展开更多
Suppose that several different imperfect instruments and one perfect instrument are independently used to measure some characteristics of a population. Thus, measurements of two or more sets of samples with varying ac...Suppose that several different imperfect instruments and one perfect instrument are independently used to measure some characteristics of a population. Thus, measurements of two or more sets of samples with varying accuracies are obtained. Statistical inference should be based on the pooled samples. In this article, the authors also assumes that all the imperfect instruments are unbiased. They consider the problem of combining this information to make statistical tests for parameters more relevant. They define the empirical likelihood ratio functions and obtain their asymptotic distributions in the presence of measurement error.展开更多
Under coronal conditions, the steady state rate-equations are used to calculate the inter-stage line ratios between Li-like ls22p(2P3/2)→ls22s(2S1/2) and He-like ls2p(1P1)→1s2(1S0) transitions for Ti in the electron...Under coronal conditions, the steady state rate-equations are used to calculate the inter-stage line ratios between Li-like ls22p(2P3/2)→ls22s(2S1/2) and He-like ls2p(1P1)→1s2(1S0) transitions for Ti in the electronic temperature ranges from 0.1keV to 20 keV. The results show that the temperature sensitivities are higher at the electronic temperature less than 5000 eV and the temperature sensitivities will decrease with the increase of electronic temperature.展开更多
Abstract: Through the application of the method of double substitute calibration using the true isotopic ratios of cerium and europium of our laboratory standards, the atomic weight of ytterbium has been determined a...Abstract: Through the application of the method of double substitute calibration using the true isotopic ratios of cerium and europium of our laboratory standards, the atomic weight of ytterbium has been determined as Ac(Yb) 173. 0428(15) on Zσ basis.展开更多
The attenuation of seismic waves reflects the elastic nature of the media within which the waves propagate.In this study,we calculate the Coda-Q(Qc),frequency dependence(η),Vp/Vs and Poisson's(υ)ratios by using ...The attenuation of seismic waves reflects the elastic nature of the media within which the waves propagate.In this study,we calculate the Coda-Q(Qc),frequency dependence(η),Vp/Vs and Poisson's(υ)ratios by using 2621 vertical component seismograms generated by 987 earthquakes recorded by 13 seismic stations in Eastern Anatolia,and creat a 2-D seismic tomographic Qc model for the region.The obtained model provides significant information for exploring the boundaries of adjacent tectonic units within the upper crust and interpreting their dynamic characteristics.The 2-D Qc model and the other parameters are consistent with the seismotectonic features of Eastern Anatolia.Highly heterogeneous Qc values are observed in the study area dividing it into north-south directed bands of low and high attenuation.The highestηvalues were obtained beneath the northwestern and eastern parts of the study region.Clear,high and lowυvalues are obtained in the western and eastern parts of the study area,respectively.The spatial variations in the measured parameters are consistent with many geophysical observations including low Pn velocities,efficient Sn blockage,high heat flow,and widespread volcanism.Different upper crustal thicknesses and inhomogeneous stress distribution along the East and North Anatolian Fault Zones may also contribute to the observed heterogeneities.展开更多
The Xing’an Mongolian Orogenic Belt(XMOB) and the northern margin of North China Craton(NCC) have undergone multistage tectonic superimposition and the tectonic evolution is extremely complicated. We collect the tele...The Xing’an Mongolian Orogenic Belt(XMOB) and the northern margin of North China Craton(NCC) have undergone multistage tectonic superimposition and the tectonic evolution is extremely complicated. We collect the teleseismic data of 44 temporary broadband seismic stations deployed in the XMOB and the northern margin of NCC to calculate the P wave receiver functions. The crustal thickness and average crustal ratio as well as the Poisson’s ratios beneath 33 stations are estimated using the H-κ stacking method. The results show:(1) the crustal thickness of the study area ranges from 38.7 to 42.7 km, with an average thickness of 41.2 km. There is a great difference in crustal thickness on both sides of Solonker suture zone. The characteristics of crustal thickness support the geodynamic model that the Paleo-Asian Ocean subducted and closed at the Solonker suture zone.(2) The Poisson’s ratios in the study area are low, ranging from 0.215 to 0.277, with an average value of 0.243, suggesting that the rock composition of the area is dominated by felsic-acid rocks.(3) There exists a negative correlation between the Poisson’s ratio and the crustal thickness. Combined with the lower values of Poisson’s ratio, we speculate that the delamination is the major mechanism in crustal extension and thinning in the study area.展开更多
The cooling of heavy ions can provide high-quality beams that are especially important for high-precisionexperimental nuclear and atomic physics. The laser cooling of relativistic C3+ ion beams at the experimental coo...The cooling of heavy ions can provide high-quality beams that are especially important for high-precisionexperimental nuclear and atomic physics. The laser cooling of relativistic C3+ ion beams at the experimental coolerstorage ring (CSRe) is being currently prepared at Institute of Modern Physics (IMP) in Lanzhou. An electroncyclotron resonance ion source (ECRIS) will be used to produce C3+ ion beams. Meanwhile, O4+ ions could alsobe produced due to residual gas because of the same mass-to-charge ratio. Therefore, both C3+ and O4+ ion beamswill be injected and circulate in a storage ring during the laser cooling experiment at the same time. A higher ratioof C3+ ions will lead to a better result for the laser cooling experiment.展开更多
基金the financial support from the National Key Research and Development Program of China(No.2021YFF0500802)the National Natural Science Foundation of China(No.51890904,No.52022022,and No.52278247)the Scientific Research and Innovation Plan of Jiangsu Province(KYCX21_0090)。
文摘Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles.As battery failures are often associated with mechanical-thermal coupled behaviors,protective shielding materials with excellent mechanical robustness and flame-retardant properties are highly desired to mitigate thermal runaway.However,most of the thermal insulating materials are not strong enough to protect batteries from mechanical abuse,which is one of the most critical scenarios with catastrophic consequences.Here,inspired by wood,we have developed an effective approach to engineer a hierarchical nanocomposite via self-assembly of calcium silicate hydrate and polyvinyl alcohol polymer chains(referred as CSH wood).The versatile protective material CSH wood demonstrates an unprecedented combination of light weight(0.018 g cm-3),high stiffness(204 MPa in the axial direction),negative Poisson's ratio(-0.15),remarkable toughness(6.67×105 J m-3),superior thermal insulation(0.0204 W m-1 K-1 in the radial direction),and excellent fire retardancy(UL94-V0).When applied as a protective cover or a protective layer within battery packages,the tough CSH wood can resist high-impact load and block heat diffusion to block or delay the spread of fire,therefore significantly reducing the risk of property damage or bodily injuries caused by battery explosions.This work provides new pathways for fabricating advanced thermal insulating materials with large scalability and demonstrates great potential for the protection of electronic devices.
基金Project supported by the National Natural Science Foundation of China(No.11872098)。
文摘This paper proposes a three-dimensional(3D)Maltese cross metamaterial with negative Poisson’s ratio(NPR)and negative thermal expansion(NTE)adopted as the core layers in sandwich plates,and aims to explore the relations between the mechanical responses of sandwich composites and the NPR or NTE of the metamaterial.First,the NPR and NTE of the metamaterial are derived analytically based on energy conservation.The effective elastic modulus and mass density of the 3D metamaterial are obtained and validated by the finite element method(FEM).Subsequently,the general governing equation of the 3D sandwich plate under thermal environments is established based on Hamilton’s principle with the consideration of the von Kármán nonlinearity.The differential quadrature(DQ)FEM(DQFEM)is utilized to obtain the numerical solutions.It is shown that NPR and NTE can enhance the global stiffness of sandwich structures.The geometric parameters of the Maltese cross metamaterial significantly affect the responses of the thermal stress,natural frequency,and critical buckling load.
基金supported by Natural Science Foundation of Guangdong Province,China (Grant Nos.2022A1515011990 and 2023A1515030086)National Natural Science Foundation of China (Grant Nos.11774239,11804230 and 61827815)+2 种基金National Key R&D Program of China (Grant No.2019YFB2204500)Shenzhen Science and Technology Innovation Commission (Grant Nos.JCYJ20220531102601004,KQTD20180412181422399 and JCYJ20180507181858539)High-Level University Construction Funds of SZU (Grant Nos.860-000002081209 and 860-000002110711)。
文摘Two-dimensional(2D)antiferroelectric materials have raised great research interest over the last decade.Here,we reveal a type of 2D antiferroelectric(AFE)crystal where the AFE polarization direction can be switched by a certain degree in the 2D plane.Such 2D functional materials are realized by stacking the exfoliated wurtzite(wz)monolayers with“self-healable”nature,which host strongly coupled ferroelasticity/antiferroelectricity and benign stability.The AFE candidates,i.e.,Zn X and Cd X(X=S,Se,Te),are all semiconductors with direct bandgap atΓpoint,which harbors switchable antiferroelectricity and ferroelasticity with low transition barriers,hidden spin polarization,as well as giant in-plane negative Poisson's ratio(NPR),enabling the co-tunability of hidden spin characteristics and auxetic magnitudes via AFE switching.The 2D AFE wz crystals provide a platform to probe the interplay of 2D antiferroelectricity,ferroelasticity,NPR,and spin effects,shedding new light on the rich physics and device design in wz semiconductors.
文摘Mechanical metamaterials such as auxetic materials have attracted great interest due to their unusual properties that are dictated by their architectures.However,these architected materials usually have low stiffness because of the bending or rotation deformation mechanisms in the microstructures.In this work,a convolutional neural network(CNN)based self-learning multi-objective optimization is performed to design digital composite materials.The CNN models have undergone rigorous training using randomly generated two-phase digital composite materials,along with their corresponding Poisson's ratios and stiffness values.Then the CNN models are used for designing composite material structures with the minimum Poisson's ratio at a given volume fraction constraint.Furthermore,we have designed composite materials with optimized stiffness while exhibiting a desired Poisson's ratio(negative,zero,or positive).The optimized designs have been successfully and efficiently obtained,and their validity has been confirmed through finite element analysis results.This self-learning multi-objective optimization model offers a promising approach for achieving comprehensive multi-objective optimization.
基金financially supported by the National Natural Science Foundation of China(No.52204084)the Open Research Fund of the State Key Laboratory of Coal Resources and safe Mining,CUMT,China(No.SKLCRSM 23KF004)+3 种基金the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities),China(No.FRF-IDRY-GD22-002)the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program,China(No.QNXM20220009)the National Key R&D Program of China(Nos.2022YFC2905600 and 2022 YFC3004601)the Science,Technology&Innovation Project of Xiongan New Area,China(No.2023XAGG0061)。
文摘Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.
文摘AIM To assess the diagnostic value of FIB-4, aspartate aminotransferase-to-platelet ratio index(APRI), and liver stiffness measurement(LSM) in patients with hepatitis B virus infection who have persistently normal alanine transaminase(PNALT).METHODS We enrolled 245 patients with chronic hepatitis B: 95 in PNALT group, 86 in intermittently elevated alanine transaminase(PIALT1) group [alanine transaminase(ALT) within 1-2 × upper limit of normal value(ULN)], and 64 in PIALT2 group(ALT > 2 × ULN). All the patients received a percutaneous liver biopsy guided by ultrasonography. LSM, biochemical tests, and complete blood cell counts were performed.RESULTS The pathological examination revealed moderate inflammatory necrosis ratios of 16.81%(16/95), 32.56%(28/86), and 45.31%(28/64), and moderate liverfibrosis of 24.2%(23/95), 33.72%(29/86), and 43.75%(28/64) in the PNALT, PIALT1, and PIALT2 groups, respectively. The degrees of inflammation and liver fibrosis were significantly higher in the PIALT groups than in the PNALT group(P < 0.05). No significant difference was found in the areas under the curve(AUCs) between APRI and FIB-4 in the PNALT group; however, significant differences were found between APRI and LSM, and between FIB-4 and LSM in the PNALT group(P < 0.05 for both). In the PIALT1 and PIALT2 groups, no significant difference(P > 0.05) was found in AUCs for all comparisons(P > 0.05 for all). In the overall patients, a significant difference in the AUCs was found only between LSM and APRI(P < 0.05).CONCLUSION APRI and FIB-4 are not the ideal noninvasive hepatic fibrosis markers for PNALT patients. LSM is superior to APRI and FIB-4 in PNALT patients because of the influence of liver inflammation and necrosis.
基金This work was supported by the National Natural Sci- ence Foundation of China (No.20903002, No.21273211, No.9112T042, and No.21373194) and the Anhui Provin- cial Natural Science Foundation (No.1408085MA18), and the National Key Basic Research Special Founda- tion (No.2013CB834602 and No.2010CB923300).
文摘The Raman depolarization ratios of gaseous CO2 in the spectral range of 1240-1430 cm-I are determined with a sensitive photoacoustic Raman spectroscopy, and more accurate data compared to the literature results are presented. The precision of the obtained depolarization ratio is achieved by measuring and fitting the dependence of the PARS signal intensity on the cross angle between the polarizations of two incident laser beams.
基金supported by the National Natural Science Foundation of China (Project 41730212)the Basic Research Project of the Institute of Earthquake Forecasting, China Earthquake Administration (2017IES0102)
文摘In the Southeast Margin of the Tibetan Plateau, low-velocity sedimentary layers that would significantly affect the accuracy of the H-κ stacking of receiver functions are widely distributed.In this study, we use teleseismic waveform data of 475 events from 97 temporary broadband seismometers deployed by ChinArray Phase I to obtain crustal thicknesses and Poisson's ratios within the Chuxiong-Simao Basin and adjacent area, employing an improved method in which the receiver functions are processed through a resonance-removal filter, and the H-κ stacking is time-corrected.Results show that the crustal thickness ranges from 30 to 55 km in the study area, reaching its thickest value in the northwest and thinning toward southwest, southeast and northeast.The apparent variation of crustal thickness around the Red River Fault supports the view of southeastern escape of the Tibetan Plateau.Relatively thin crustal thickness in the zone between Chuxiong City and the Red River Fault indicates possible uplift of mantle in this area.The positive correlation between crustal thickness and Poisson's ratio is likely to be related to lower crust thickening.Comparison of results obtained from different methods shows that the improved method used in our study can effectively remove the reverberation effect of sedimentary layers.
基金This research was sponsored by the Science and Technology Project for Policy Guidance of Jiangsu Province(SZ-LYG 2020016).
文摘In this article,dynamic method and static method of testing Poisson's ratio of OSB(Oriented Strand Board)were proposed.Through modal and static numerical analyses,the position where the transverse stress is equal to zero was determined.The binary linear regression method was applied to express the gluing position of the strain gauge as a relational express ion that depended on the length-width ratio and width-thickness ratio of the canti-lever plate.Then the longitudinal and transverse Poisson's ratios of OSB were mea sured by the given dynamic and static methods.In addition,the test results of OSB Poisson's ratio were analyzed with the probability distribution of random variables.The results showed that using the proposed dynamic method and static method,the test results for longitudinal and transverse Poisson's ratios of OSB were quite consistent,despite the gluing position of the strain gauges being different.And these OSB Poisson's ratios were accorded with that obtained by the axial tensile method and the four-point bending method.OSB longitudinal and transverse Poisson's ratios followed Weibull distribution.
基金This work is supported by NNSF of China (10571093)
文摘Suppose that several different imperfect instruments and one perfect instrument are independently used to measure some characteristics of a population. Thus, measurements of two or more sets of samples with varying accuracies are obtained. Statistical inference should be based on the pooled samples. In this article, the authors also assumes that all the imperfect instruments are unbiased. They consider the problem of combining this information to make statistical tests for parameters more relevant. They define the empirical likelihood ratio functions and obtain their asymptotic distributions in the presence of measurement error.
文摘Under coronal conditions, the steady state rate-equations are used to calculate the inter-stage line ratios between Li-like ls22p(2P3/2)→ls22s(2S1/2) and He-like ls2p(1P1)→1s2(1S0) transitions for Ti in the electronic temperature ranges from 0.1keV to 20 keV. The results show that the temperature sensitivities are higher at the electronic temperature less than 5000 eV and the temperature sensitivities will decrease with the increase of electronic temperature.
文摘Abstract: Through the application of the method of double substitute calibration using the true isotopic ratios of cerium and europium of our laboratory standards, the atomic weight of ytterbium has been determined as Ac(Yb) 173. 0428(15) on Zσ basis.
文摘The attenuation of seismic waves reflects the elastic nature of the media within which the waves propagate.In this study,we calculate the Coda-Q(Qc),frequency dependence(η),Vp/Vs and Poisson's(υ)ratios by using 2621 vertical component seismograms generated by 987 earthquakes recorded by 13 seismic stations in Eastern Anatolia,and creat a 2-D seismic tomographic Qc model for the region.The obtained model provides significant information for exploring the boundaries of adjacent tectonic units within the upper crust and interpreting their dynamic characteristics.The 2-D Qc model and the other parameters are consistent with the seismotectonic features of Eastern Anatolia.Highly heterogeneous Qc values are observed in the study area dividing it into north-south directed bands of low and high attenuation.The highestηvalues were obtained beneath the northwestern and eastern parts of the study region.Clear,high and lowυvalues are obtained in the western and eastern parts of the study area,respectively.The spatial variations in the measured parameters are consistent with many geophysical observations including low Pn velocities,efficient Sn blockage,high heat flow,and widespread volcanism.Different upper crustal thicknesses and inhomogeneous stress distribution along the East and North Anatolian Fault Zones may also contribute to the observed heterogeneities.
基金supported by the National Natural Science Foundation of China (No. 41774066)Central Public-interest Scientific Institution Basal Research special(No. DQJB16A0305)
文摘The Xing’an Mongolian Orogenic Belt(XMOB) and the northern margin of North China Craton(NCC) have undergone multistage tectonic superimposition and the tectonic evolution is extremely complicated. We collect the teleseismic data of 44 temporary broadband seismic stations deployed in the XMOB and the northern margin of NCC to calculate the P wave receiver functions. The crustal thickness and average crustal ratio as well as the Poisson’s ratios beneath 33 stations are estimated using the H-κ stacking method. The results show:(1) the crustal thickness of the study area ranges from 38.7 to 42.7 km, with an average thickness of 41.2 km. There is a great difference in crustal thickness on both sides of Solonker suture zone. The characteristics of crustal thickness support the geodynamic model that the Paleo-Asian Ocean subducted and closed at the Solonker suture zone.(2) The Poisson’s ratios in the study area are low, ranging from 0.215 to 0.277, with an average value of 0.243, suggesting that the rock composition of the area is dominated by felsic-acid rocks.(3) There exists a negative correlation between the Poisson’s ratio and the crustal thickness. Combined with the lower values of Poisson’s ratio, we speculate that the delamination is the major mechanism in crustal extension and thinning in the study area.
基金National Natural Science Foundation of China (10979007, 91126004, 11274317)
文摘The cooling of heavy ions can provide high-quality beams that are especially important for high-precisionexperimental nuclear and atomic physics. The laser cooling of relativistic C3+ ion beams at the experimental coolerstorage ring (CSRe) is being currently prepared at Institute of Modern Physics (IMP) in Lanzhou. An electroncyclotron resonance ion source (ECRIS) will be used to produce C3+ ion beams. Meanwhile, O4+ ions could alsobe produced due to residual gas because of the same mass-to-charge ratio. Therefore, both C3+ and O4+ ion beamswill be injected and circulate in a storage ring during the laser cooling experiment at the same time. A higher ratioof C3+ ions will lead to a better result for the laser cooling experiment.