Let L be a Schrdinger operator of the form L =-? + V acting on L^2(R^n), n≥3, where the nonnegative potential V belongs to the reverse Hlder class B_q for some q≥n. Let BMO_L(R^n) denote the BMO space associated to ...Let L be a Schrdinger operator of the form L =-? + V acting on L^2(R^n), n≥3, where the nonnegative potential V belongs to the reverse Hlder class B_q for some q≥n. Let BMO_L(R^n) denote the BMO space associated to the Schrdinger operator L on R^n. In this article, we show that for every f ∈ BMO_L(R^n) with compact support, then there exist g ∈ L~∞(R^n) and a finite Carleson measure μ such that f(x) = g(x) + S_(μ,P)(x) with ∥g∥∞ + |||μ|||c≤ C∥f∥BMO_L(R^n), where S_(μ,P)=∫(R_+^(n+1))Pt(x,y)dμ(y, t),and Pt(x, y) is the kernel of the Poisson semigroup {e-^(t(L)^(1/2))}t>0 on L^2(R^n). Conversely, if μ is a Carleson measure, then S_(μ,P) belongs to the space BMO_L(R^n). This extends the result for the classical John-Nirenberg BMO space by Carleson(1976)(see also Garnett and Jones(1982), Uchiyama(1980) and Wilson(1988)) to the BMO setting associated to Schrdinger operators.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 11501583, 11471338, 11622113, 11371378 and 11521101)Australian Research Council Discovery (Grant Nos. DP 140100649 and DP 170101060)+1 种基金Guangdong Natural Science Funds for Distinguished Young Scholar (Grant No. 2016A030306040)Guangdong Special Support Program
文摘Let L be a Schrdinger operator of the form L =-? + V acting on L^2(R^n), n≥3, where the nonnegative potential V belongs to the reverse Hlder class B_q for some q≥n. Let BMO_L(R^n) denote the BMO space associated to the Schrdinger operator L on R^n. In this article, we show that for every f ∈ BMO_L(R^n) with compact support, then there exist g ∈ L~∞(R^n) and a finite Carleson measure μ such that f(x) = g(x) + S_(μ,P)(x) with ∥g∥∞ + |||μ|||c≤ C∥f∥BMO_L(R^n), where S_(μ,P)=∫(R_+^(n+1))Pt(x,y)dμ(y, t),and Pt(x, y) is the kernel of the Poisson semigroup {e-^(t(L)^(1/2))}t>0 on L^2(R^n). Conversely, if μ is a Carleson measure, then S_(μ,P) belongs to the space BMO_L(R^n). This extends the result for the classical John-Nirenberg BMO space by Carleson(1976)(see also Garnett and Jones(1982), Uchiyama(1980) and Wilson(1988)) to the BMO setting associated to Schrdinger operators.