期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Carleson measures, BMO spaces and balayages associated to Schrdinger operators
1
作者 CHEN Peng DUONG XuanThinh +2 位作者 LI Ji SONG Liang YAN LiXin 《Science China Mathematics》 SCIE CSCD 2017年第11期2077-2092,共16页
Let L be a Schrdinger operator of the form L =-? + V acting on L^2(R^n), n≥3, where the nonnegative potential V belongs to the reverse Hlder class B_q for some q≥n. Let BMO_L(R^n) denote the BMO space associated to ... Let L be a Schrdinger operator of the form L =-? + V acting on L^2(R^n), n≥3, where the nonnegative potential V belongs to the reverse Hlder class B_q for some q≥n. Let BMO_L(R^n) denote the BMO space associated to the Schrdinger operator L on R^n. In this article, we show that for every f ∈ BMO_L(R^n) with compact support, then there exist g ∈ L~∞(R^n) and a finite Carleson measure μ such that f(x) = g(x) + S_(μ,P)(x) with ∥g∥∞ + |||μ|||c≤ C∥f∥BMO_L(R^n), where S_(μ,P)=∫(R_+^(n+1))Pt(x,y)dμ(y, t),and Pt(x, y) is the kernel of the Poisson semigroup {e-^(t(L)^(1/2))}t>0 on L^2(R^n). Conversely, if μ is a Carleson measure, then S_(μ,P) belongs to the space BMO_L(R^n). This extends the result for the classical John-Nirenberg BMO space by Carleson(1976)(see also Garnett and Jones(1982), Uchiyama(1980) and Wilson(1988)) to the BMO setting associated to Schrdinger operators. 展开更多
关键词 BMO space Carleson measure balayage poisson semigroup the reverse Holder class Schrodinger operators
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部