A theoretical model is developed for predicting both conduction and diffusion in thin-film ionic conductors or cables. With the linearized Poisson-Nernst-Planck(PNP)theory, the two-dimensional(2D) equations for thin i...A theoretical model is developed for predicting both conduction and diffusion in thin-film ionic conductors or cables. With the linearized Poisson-Nernst-Planck(PNP)theory, the two-dimensional(2D) equations for thin ionic conductor films are obtained from the three-dimensional(3D) equations by power series expansions in the film thickness coordinate, retaining the lower-order equations. The thin-film equations for ionic conductors are combined with similar equations for one thin dielectric film to derive the 2D equations of thin sandwich films composed of a dielectric layer and two ionic conductor layers. A sandwich film in the literature, as an ionic cable, is analyzed as an example of the equations obtained in this paper. The numerical results show the effect of diffusion in addition to the conduction treated in the literature. The obtained theoretical model including both conduction and diffusion phenomena can be used to investigate the performance of ionic-conductor devices with any frequency.展开更多
In this paper, a coordinate transformation method (CTM) is employed to numerically solve the Poisson–Nernst–Planck (PNP) equation and Navier–Stokes (NS) equations for studying the traveling-wave electroosmotic flow...In this paper, a coordinate transformation method (CTM) is employed to numerically solve the Poisson–Nernst–Planck (PNP) equation and Navier–Stokes (NS) equations for studying the traveling-wave electroosmotic flow (TWEF) in a two-dimensional microchannel. Numerical solutions indicate that the numerical solutions of TWEF with and without the coordinate transformation are in good agreement, while CTM effectively improves stability and convergence rate of the numerical solution, and saves computational cost. It is found that the averaged flow velocity of TWEF in a micro-channel strongly depends on frequency of the electric field. Flow rate achieves a maximum around the charge frequency of the electric double layer. The approximate solutions of TWEF with slip boundary conditions are also presented for comparison. It is shown that the NS solution with slip boundary conditions agree well with those of complete PNP-NS equations in the cases of small ratios of Electric double layer(EDL) thickness to channel depth(λD/H). The NS solution with slip boundary conditions over-estimates the electroosmotic flow velocity as this ratio(λD/H) is large.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11672265,11202182,and 11621062)the Fundamental Research Funds for the Central Universities(Nos.2016QNA4026 and2016XZZX001-05)the Open Foundation of Zhejiang Provincial Top Key Discipline of Mechanical Engineering
文摘A theoretical model is developed for predicting both conduction and diffusion in thin-film ionic conductors or cables. With the linearized Poisson-Nernst-Planck(PNP)theory, the two-dimensional(2D) equations for thin ionic conductor films are obtained from the three-dimensional(3D) equations by power series expansions in the film thickness coordinate, retaining the lower-order equations. The thin-film equations for ionic conductors are combined with similar equations for one thin dielectric film to derive the 2D equations of thin sandwich films composed of a dielectric layer and two ionic conductor layers. A sandwich film in the literature, as an ionic cable, is analyzed as an example of the equations obtained in this paper. The numerical results show the effect of diffusion in addition to the conduction treated in the literature. The obtained theoretical model including both conduction and diffusion phenomena can be used to investigate the performance of ionic-conductor devices with any frequency.
文摘In this paper, a coordinate transformation method (CTM) is employed to numerically solve the Poisson–Nernst–Planck (PNP) equation and Navier–Stokes (NS) equations for studying the traveling-wave electroosmotic flow (TWEF) in a two-dimensional microchannel. Numerical solutions indicate that the numerical solutions of TWEF with and without the coordinate transformation are in good agreement, while CTM effectively improves stability and convergence rate of the numerical solution, and saves computational cost. It is found that the averaged flow velocity of TWEF in a micro-channel strongly depends on frequency of the electric field. Flow rate achieves a maximum around the charge frequency of the electric double layer. The approximate solutions of TWEF with slip boundary conditions are also presented for comparison. It is shown that the NS solution with slip boundary conditions agree well with those of complete PNP-NS equations in the cases of small ratios of Electric double layer(EDL) thickness to channel depth(λD/H). The NS solution with slip boundary conditions over-estimates the electroosmotic flow velocity as this ratio(λD/H) is large.