Based on the teleseismic waveform data recorded by 82 permanent broadband stations in Guangdong Province and its adjacent areas including Fujian, Jiangxi, Hunan, Guangxi, Hainan and Taiwan, we calculate body wave rece...Based on the teleseismic waveform data recorded by 82 permanent broadband stations in Guangdong Province and its adjacent areas including Fujian, Jiangxi, Hunan, Guangxi, Hainan and Taiwan, we calculate body wave receiver functions under all stations, and obtain the crustal thickness and average Poisson's ratio beneath all stations by the H-K stacking-search method of receiver function. The results show that the crustal thickness with an average thickness of 29. 5km in Guangdong Province and its adjacent areas ranges between 26. 8km and 33. 6kin and gradually thins from northwest to southeast. The crustal thickness in the Zhujiang Delta, western Guangdong, Nanning and Nan'ao areas is relatively thinner and ranges between 25. 0km and 28. 0km. The minimum crustal thickness is about 26km beneath Wengtian, Hainan and the Zhanjiang zone and Shangchuan Island in Guangdong. The crustal thickness in the zones of Mingxi, Fujian and Yongzhou, Hunan is thicker and varies between 31.0km and 34.0km. The distribution of Poisson's ratio in our study region ranges between 0.20 and 0. 29. Poisson's ratios in Southeast Hainan, the coastal areas of East Guangdong and West Fujian and the South Jiangxi have distinctly higher values than in others. It suggests that the various geothermal fields located in these areas have high heat flow values. The distribution of crustal thickness and Poisson's ratio has an obvious block feature and may be related to the distribution of faults and historical earthquakes.展开更多
Rockburst disasters occur frequently during deep underground excavation,yet traditional concepts and methods can hardly meet the requirements for support under high geo-stress conditions.Consequently,rockburst control...Rockburst disasters occur frequently during deep underground excavation,yet traditional concepts and methods can hardly meet the requirements for support under high geo-stress conditions.Consequently,rockburst control remains challenging in the engineering field.In this study,the mechanism of excavation-induced rockburst was briefly described,and it was proposed to apply the excavation compensation method(ECM)to rockburst control.Moreover,a field test was carried out on the Qinling Water Conveyance Tunnel.The following beneficial findings were obtained:Excavation leads to changes in the engineering stress state of surrounding rock and results in the generation of excess energy DE,which is the fundamental cause of rockburst.The ECM,which aims to offset the deep excavation effect and lower the risk of rockburst,is an active support strategy based on high pre-stress compensation.The new negative Poisson’s ratio(NPR)bolt developed has the mechanical characteristics of high strength,high toughness,and impact resistance,serving as the material basis for the ECM.The field test results reveal that the ECM and the NPR bolt succeed in controlling rockburst disasters effectively.The research results are expected to provide guidance for rockburst support in deep underground projects such as Sichuan-Xizang Railway.展开更多
Static Poisson’s ratio(vs)is crucial for determining geomechanical properties in petroleum applications,namely sand production.Some models have been used to predict vs;however,the published models were limited to spe...Static Poisson’s ratio(vs)is crucial for determining geomechanical properties in petroleum applications,namely sand production.Some models have been used to predict vs;however,the published models were limited to specific data ranges with an average absolute percentage relative error(AAPRE)of more than 10%.The published gated recurrent unit(GRU)models do not consider trend analysis to show physical behaviors.In this study,we aim to develop a GRU model using trend analysis and three inputs for predicting n s based on a broad range of data,n s(value of 0.1627-0.4492),bulk formation density(RHOB)(0.315-2.994 g/mL),compressional time(DTc)(44.43-186.9 μs/ft),and shear time(DTs)(72.9-341.2μ s/ft).The GRU model was evaluated using different approaches,including statistical error an-alyses.The GRU model showed the proper trends,and the model data ranges were wider than previous ones.The GRU model has the largest correlation coefficient(R)of 0.967 and the lowest AAPRE,average percent relative error(APRE),root mean square error(RMSE),and standard deviation(SD)of 3.228%,1.054%,4.389,and 0.013,respectively,compared to other models.The GRU model has a high accuracy for the different datasets:training,validation,testing,and the whole datasets with R and AAPRE values were 0.981 and 2.601%,0.966 and 3.274%,0.967 and 3.228%,and 0.977 and 2.861%,respectively.The group error analyses of all inputs show that the GRU model has less than 5% AAPRE for all input ranges,which is superior to other models that have different AAPRE values of more than 10% at various ranges of inputs.展开更多
In the tag recommendation task on academic platforms,existing methods disregard users’customized preferences in favor of extracting tags based just on the content of the articles.Besides,it uses co-occurrence techniq...In the tag recommendation task on academic platforms,existing methods disregard users’customized preferences in favor of extracting tags based just on the content of the articles.Besides,it uses co-occurrence techniques and tries to combine nodes’textual content for modelling.They still do not,however,directly simulate many interactions in network learning.In order to address these issues,we present a novel system that more thoroughly integrates user preferences and citation networks into article labelling recommendations.Specifically,we first employ path similarity to quantify the degree of similarity between user labelling preferences and articles in the citation network.Then,the Commuting Matrix for massive node pair paths is used to improve computational performance.Finally,the two commonalities mentioned above are combined with the interaction paper labels based on the additivity of Poisson distribution.In addition,we also consider solving the model’s parameters by applying variational inference.Experimental results demonstrate that our suggested framework agrees and significantly outperforms the state-of-the-art baseline on two real datasets by efficiently merging the three relational data.Based on the Area Under Curve(AUC)and Mean Average Precision(MAP)analysis,the performance of the suggested task is evaluated,and it is demonstrated to have a greater solving efficiency than current techniques.展开更多
P-and S-wave separation plays an important role in elastic reverse-time migration.It can reduce the artifacts caused by crosstalk between different modes and improve image quality.In addition,P-and Swave separation ca...P-and S-wave separation plays an important role in elastic reverse-time migration.It can reduce the artifacts caused by crosstalk between different modes and improve image quality.In addition,P-and Swave separation can also be used to better understand and distinguish wave types in complex media.At present,the methods for separating wave modes in anisotropic media mainly include spatial nonstationary filtering,low-rank approximation,and vector Poisson equation.Most of these methods require multiple Fourier transforms or the calculation of large matrices,which require high computational costs for problems with large scale.In this paper,an efficient method is proposed to separate the wave mode for anisotropic media by using a scalar anisotropic Poisson operator in the spatial domain.For 2D problems,the computational complexity required by this method is 1/2 of the methods based on solving a vector Poisson equation.Therefore,compared with existing methods based on pseudoHelmholtz decomposition operators,this method can significantly reduce the computational cost.Numerical examples also show that the P and S waves decomposed by this method not only have the correct amplitude and phase relative to the input wavefield but also can reduce the computational complexity significantly.展开更多
This study uses logistic and Poisson regression models to examine the factors influencing the adoption of sustain-able land management(SLM)practices in Mali using two rounds of the nationally representative survey Enq...This study uses logistic and Poisson regression models to examine the factors influencing the adoption of sustain-able land management(SLM)practices in Mali using two rounds of the nationally representative survey Enquête Agricole de Conjoncture Intégrée aux Conditions de Vie des Ménages.The SLMs considered include the applica-tion of organic fertilizers,the application of inorganic fertilizers,the use of improved seeds,and the practice of intercropping.On average the application of organic fertilizers(39.2%),and inorganic fertilizers(28.7%)are the most frequent SLM practices among Malian farmers,and between 2014 and 2017,we observe a decline in the practice of intercropping.The regression results show that farmers’adoption of different SLMs is significantly associated with biophysical factors(average temperature,climate type,plot size,plot shape,and location),de-mographic factors(age,gender,education,household size),and socioeconomic factors(number of cultivated plots,livelihood diversification,type of crop grown,market access,credit access,economic shocks,and social capital).Our findings suggest that policymakers and agricultural development agencies in Mali need to adopt a multidimensional policy framework to unlock the untapped potential of SLM practices in promoting sustainable agriculture and food security.展开更多
Negative Poisson’s ratio(NPR)metamaterials are attractive for their unique mechanical behaviors and potential applications in deformation control and energy absorption.However,when subjected to significant stretching...Negative Poisson’s ratio(NPR)metamaterials are attractive for their unique mechanical behaviors and potential applications in deformation control and energy absorption.However,when subjected to significant stretching,NPR metamaterials designed under small strain assumption may experience a rapid degradation in NPR performance.To address this issue,this study aims to design metamaterials maintaining a targeted NPR under large deformation by taking advantage of the geometry nonlinearity mechanism.A representative periodic unit cell is modeled considering geometry nonlinearity,and its topology is designed using a gradient-free method.The unit cell microstructural topologies are described with the material-field series-expansion(MFSE)method.The MFSE method assumes spatial correlation of the material distribution,which greatly reduces the number of required design variables.To conveniently design metamaterials with desired NPR under large deformation,we propose a two-stage gradient-free metamaterial topology optimization method,which fully takes advantage of the dimension reduction benefits of the MFSE method and the Kriging surrogate model technique.Initially,we use homogenization to find a preliminary NPR design under a small deformation assumption.In the second stage,we begin with this preliminary design and minimize deviations in NPR from a targeted value under large deformation.Using this strategy and solution technique,we successfully obtain a group of NPR metamaterials that can sustain different desired NPRs in the range of[−0.8,−0.1]under uniaxial stretching up to 20% strain.Furthermore,typical microstructure designs are fabricated and tested through experiments.The experimental results show good consistency with our numerical results,demonstrating the effectiveness of the present gradientfree NPR metamaterial design strategy.展开更多
In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high d...In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high data rate.We consider randomly-deployed macro base stations throughout the network whereas mmWave Small Base Stations(SBSs)are deployed in the areas with high User Equipment(UE)density.Such user centric deployment of mmWave SBSs inevitably incurs correlation between UE and SBSs.For a realistic scenario where the UEs are distributed according to Poisson cluster process and directional beamforming with line-of-sight and non-line-of-sight transmissions is adopted for mmWave communication.By using tools from stochastic geometry,we develop an analytical framework to analyze various performance metrics in the downlink hybrid HCNets under biased received power association.For UE clustering we considered Thomas cluster process and derive expressions for the association probability,coverage probability,area spectral efficiency,and energy efficiency.We also provide Monte Carlo simulation results to validate the accuracy of the derived expressions.Furthermore,we analyze the impact of mmWave operating frequency,antenna gain,small cell biasing,and BSs density to get useful engineering insights into the performance of hybrid mmWave HCNets.Our results show that network performance is significantly improved by deploying millimeter wave SBS instead of microwave BS in hot spots.展开更多
基金sponsored by the Science and Technology Program of Guangdong Province(20090308)
文摘Based on the teleseismic waveform data recorded by 82 permanent broadband stations in Guangdong Province and its adjacent areas including Fujian, Jiangxi, Hunan, Guangxi, Hainan and Taiwan, we calculate body wave receiver functions under all stations, and obtain the crustal thickness and average Poisson's ratio beneath all stations by the H-K stacking-search method of receiver function. The results show that the crustal thickness with an average thickness of 29. 5km in Guangdong Province and its adjacent areas ranges between 26. 8km and 33. 6kin and gradually thins from northwest to southeast. The crustal thickness in the Zhujiang Delta, western Guangdong, Nanning and Nan'ao areas is relatively thinner and ranges between 25. 0km and 28. 0km. The minimum crustal thickness is about 26km beneath Wengtian, Hainan and the Zhanjiang zone and Shangchuan Island in Guangdong. The crustal thickness in the zones of Mingxi, Fujian and Yongzhou, Hunan is thicker and varies between 31.0km and 34.0km. The distribution of Poisson's ratio in our study region ranges between 0.20 and 0. 29. Poisson's ratios in Southeast Hainan, the coastal areas of East Guangdong and West Fujian and the South Jiangxi have distinctly higher values than in others. It suggests that the various geothermal fields located in these areas have high heat flow values. The distribution of crustal thickness and Poisson's ratio has an obvious block feature and may be related to the distribution of faults and historical earthquakes.
基金supported by the National Natural Science Foundation of China (41941018)the Foundation of State Key Laboratory for Geomechanics and Deep Underground Engineering (SKLGDUEK 2217)the Foundation of Collaborative Innovation Center for Prevention and Control of Mountain Geological Hazards of Zhejiang Province (PCMGH-2022-03).
文摘Rockburst disasters occur frequently during deep underground excavation,yet traditional concepts and methods can hardly meet the requirements for support under high geo-stress conditions.Consequently,rockburst control remains challenging in the engineering field.In this study,the mechanism of excavation-induced rockburst was briefly described,and it was proposed to apply the excavation compensation method(ECM)to rockburst control.Moreover,a field test was carried out on the Qinling Water Conveyance Tunnel.The following beneficial findings were obtained:Excavation leads to changes in the engineering stress state of surrounding rock and results in the generation of excess energy DE,which is the fundamental cause of rockburst.The ECM,which aims to offset the deep excavation effect and lower the risk of rockburst,is an active support strategy based on high pre-stress compensation.The new negative Poisson’s ratio(NPR)bolt developed has the mechanical characteristics of high strength,high toughness,and impact resistance,serving as the material basis for the ECM.The field test results reveal that the ECM and the NPR bolt succeed in controlling rockburst disasters effectively.The research results are expected to provide guidance for rockburst support in deep underground projects such as Sichuan-Xizang Railway.
基金The authors thank the Yayasan Universiti Teknologi PETRONAS(YUTP FRG Grant No.015LC0-428)at Universiti Teknologi PETRO-NAS for supporting this study.
文摘Static Poisson’s ratio(vs)is crucial for determining geomechanical properties in petroleum applications,namely sand production.Some models have been used to predict vs;however,the published models were limited to specific data ranges with an average absolute percentage relative error(AAPRE)of more than 10%.The published gated recurrent unit(GRU)models do not consider trend analysis to show physical behaviors.In this study,we aim to develop a GRU model using trend analysis and three inputs for predicting n s based on a broad range of data,n s(value of 0.1627-0.4492),bulk formation density(RHOB)(0.315-2.994 g/mL),compressional time(DTc)(44.43-186.9 μs/ft),and shear time(DTs)(72.9-341.2μ s/ft).The GRU model was evaluated using different approaches,including statistical error an-alyses.The GRU model showed the proper trends,and the model data ranges were wider than previous ones.The GRU model has the largest correlation coefficient(R)of 0.967 and the lowest AAPRE,average percent relative error(APRE),root mean square error(RMSE),and standard deviation(SD)of 3.228%,1.054%,4.389,and 0.013,respectively,compared to other models.The GRU model has a high accuracy for the different datasets:training,validation,testing,and the whole datasets with R and AAPRE values were 0.981 and 2.601%,0.966 and 3.274%,0.967 and 3.228%,and 0.977 and 2.861%,respectively.The group error analyses of all inputs show that the GRU model has less than 5% AAPRE for all input ranges,which is superior to other models that have different AAPRE values of more than 10% at various ranges of inputs.
基金supported by the National Natural Science Foundation of China(No.62271274).
文摘In the tag recommendation task on academic platforms,existing methods disregard users’customized preferences in favor of extracting tags based just on the content of the articles.Besides,it uses co-occurrence techniques and tries to combine nodes’textual content for modelling.They still do not,however,directly simulate many interactions in network learning.In order to address these issues,we present a novel system that more thoroughly integrates user preferences and citation networks into article labelling recommendations.Specifically,we first employ path similarity to quantify the degree of similarity between user labelling preferences and articles in the citation network.Then,the Commuting Matrix for massive node pair paths is used to improve computational performance.Finally,the two commonalities mentioned above are combined with the interaction paper labels based on the additivity of Poisson distribution.In addition,we also consider solving the model’s parameters by applying variational inference.Experimental results demonstrate that our suggested framework agrees and significantly outperforms the state-of-the-art baseline on two real datasets by efficiently merging the three relational data.Based on the Area Under Curve(AUC)and Mean Average Precision(MAP)analysis,the performance of the suggested task is evaluated,and it is demonstrated to have a greater solving efficiency than current techniques.
基金supported by the National Key R&D Program of China(No.2018YFA0702505)the project of CNOOC Limited(Grant No.CNOOC-KJ GJHXJSGG YF 2022-01)+1 种基金R&D Department of China National Petroleum Corporation(Investigations on fundamental experiments and advanced theoretical methods in geophysical prospecting application,2022DQ0604-02)NSFC(Grant Nos.U23B20159,41974142,42074129,12001311)。
文摘P-and S-wave separation plays an important role in elastic reverse-time migration.It can reduce the artifacts caused by crosstalk between different modes and improve image quality.In addition,P-and Swave separation can also be used to better understand and distinguish wave types in complex media.At present,the methods for separating wave modes in anisotropic media mainly include spatial nonstationary filtering,low-rank approximation,and vector Poisson equation.Most of these methods require multiple Fourier transforms or the calculation of large matrices,which require high computational costs for problems with large scale.In this paper,an efficient method is proposed to separate the wave mode for anisotropic media by using a scalar anisotropic Poisson operator in the spatial domain.For 2D problems,the computational complexity required by this method is 1/2 of the methods based on solving a vector Poisson equation.Therefore,compared with existing methods based on pseudoHelmholtz decomposition operators,this method can significantly reduce the computational cost.Numerical examples also show that the P and S waves decomposed by this method not only have the correct amplitude and phase relative to the input wavefield but also can reduce the computational complexity significantly.
文摘This study uses logistic and Poisson regression models to examine the factors influencing the adoption of sustain-able land management(SLM)practices in Mali using two rounds of the nationally representative survey Enquête Agricole de Conjoncture Intégrée aux Conditions de Vie des Ménages.The SLMs considered include the applica-tion of organic fertilizers,the application of inorganic fertilizers,the use of improved seeds,and the practice of intercropping.On average the application of organic fertilizers(39.2%),and inorganic fertilizers(28.7%)are the most frequent SLM practices among Malian farmers,and between 2014 and 2017,we observe a decline in the practice of intercropping.The regression results show that farmers’adoption of different SLMs is significantly associated with biophysical factors(average temperature,climate type,plot size,plot shape,and location),de-mographic factors(age,gender,education,household size),and socioeconomic factors(number of cultivated plots,livelihood diversification,type of crop grown,market access,credit access,economic shocks,and social capital).Our findings suggest that policymakers and agricultural development agencies in Mali need to adopt a multidimensional policy framework to unlock the untapped potential of SLM practices in promoting sustainable agriculture and food security.
基金the support of the National Science Foundation of China(12372120,12172075)the Liaoning Revitalization Talents Program(XLYC2007027)Fundamental Research Funds for the Central Universities(DUT21RC(3)067).
文摘Negative Poisson’s ratio(NPR)metamaterials are attractive for their unique mechanical behaviors and potential applications in deformation control and energy absorption.However,when subjected to significant stretching,NPR metamaterials designed under small strain assumption may experience a rapid degradation in NPR performance.To address this issue,this study aims to design metamaterials maintaining a targeted NPR under large deformation by taking advantage of the geometry nonlinearity mechanism.A representative periodic unit cell is modeled considering geometry nonlinearity,and its topology is designed using a gradient-free method.The unit cell microstructural topologies are described with the material-field series-expansion(MFSE)method.The MFSE method assumes spatial correlation of the material distribution,which greatly reduces the number of required design variables.To conveniently design metamaterials with desired NPR under large deformation,we propose a two-stage gradient-free metamaterial topology optimization method,which fully takes advantage of the dimension reduction benefits of the MFSE method and the Kriging surrogate model technique.Initially,we use homogenization to find a preliminary NPR design under a small deformation assumption.In the second stage,we begin with this preliminary design and minimize deviations in NPR from a targeted value under large deformation.Using this strategy and solution technique,we successfully obtain a group of NPR metamaterials that can sustain different desired NPRs in the range of[−0.8,−0.1]under uniaxial stretching up to 20% strain.Furthermore,typical microstructure designs are fabricated and tested through experiments.The experimental results show good consistency with our numerical results,demonstrating the effectiveness of the present gradientfree NPR metamaterial design strategy.
文摘In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high data rate.We consider randomly-deployed macro base stations throughout the network whereas mmWave Small Base Stations(SBSs)are deployed in the areas with high User Equipment(UE)density.Such user centric deployment of mmWave SBSs inevitably incurs correlation between UE and SBSs.For a realistic scenario where the UEs are distributed according to Poisson cluster process and directional beamforming with line-of-sight and non-line-of-sight transmissions is adopted for mmWave communication.By using tools from stochastic geometry,we develop an analytical framework to analyze various performance metrics in the downlink hybrid HCNets under biased received power association.For UE clustering we considered Thomas cluster process and derive expressions for the association probability,coverage probability,area spectral efficiency,and energy efficiency.We also provide Monte Carlo simulation results to validate the accuracy of the derived expressions.Furthermore,we analyze the impact of mmWave operating frequency,antenna gain,small cell biasing,and BSs density to get useful engineering insights into the performance of hybrid mmWave HCNets.Our results show that network performance is significantly improved by deploying millimeter wave SBS instead of microwave BS in hot spots.