Compared with single-polarized synthetic aperture radar (SAR) images, full polarimetric SAIl images contain not only geometrical and backward scattering characteristics, but also the polarization features of the sca...Compared with single-polarized synthetic aperture radar (SAR) images, full polarimetric SAIl images contain not only geometrical and backward scattering characteristics, but also the polarization features of the scattering targets. Therefore, the polarimetric SAR has more advantages for oil spill detection on the sea surface. As a crucial step in the oil spill detection, a feature extraction directly influences the accuracy of oil spill discrimination. The polarimetric features of sea oil spills, such as polarimetric entropy, average scatter angle, in the full polarimetric SAR images are analyzed firstly. And a new polarimetric parameter P which reflects the proportion between Bragg and specular scattering signals is proposed. In order to investigate the capability of the polarimetric features for observing an oil spill, systematic comparisons and analyses of the multipolarization features are provided on the basis of the full polarimetric SAR images acquired by SIR-C/X-SAR and Radarsat-2. The experiment results show that in C-band SAR images the oil spills can be detected more easily than in L-band SAR images under low to moderate wind speed conditions. Moreover, it also finds that the new polarimetric parameter is sensitive to the sea surface scattering mechanisms. And the experiment results demonstrate that the new polarimetric parameter and pedestal height perform better than other polarimetric parameters for the oil spill detection in the C-band SAR images.展开更多
Coastal winds are strongly influenced by topology and discontinuity between land and sea surfaces. Wind assessment from remote sensing in such a complex area remains a challenge. Space-borne scatterometer does not pro...Coastal winds are strongly influenced by topology and discontinuity between land and sea surfaces. Wind assessment from remote sensing in such a complex area remains a challenge. Space-borne scatterometer does not provide any information about the coastal wind field, as the coarse spatial resolution hampers the radar backscattering. Synthetic aperture radar (SAR) with a high spatial resolution and all-weather observation abilities has become one of the most important tools for ocean wind retrieval, especially in the coastal area. Conventional methods of wind field retrieval from SAR, however, require wind direction as initial information, such as the wind direction from numerical weather prediction models (NWP), which may not match the time of SAR image acquiring. Fortunately, the polarimetric observations of SAR enable independent wind retrieval from SAR images alone. In order to accurately measure coastal wind fields, this paper proposes a new method of using co-polarization backscattering coefficients from polarimetric SAR observations up to polarimetric correlation backscattering coefficients, which are acquired from the conjugate product of co-polarization backscatter and cross-polarization backscatter. Co-polarization backscattering coefficients and polarimetric correlation backscattering coefficients are obtained form Radarsat-2 single-look complex (SLC) data.The maximum likelihood estimation is used to gain the initial results followed by the coarse spatial filtering and fine spatial filtering. Wind direction accuracy of the final inversion results is 10.67 with a wind speed accuracy of 0.32 m/s. Unlike previous methods, the methods described in this article utilize the SAR data itself to obtain the wind vectors and do not need external wind directional information. High spatial resolution and high accuracy are the most important features of the method described herein since the use of full polarimetric observations contains more information about the space measured.This article is a useful addition to the work of independent SAR wind retrieval. The experimental results herein show that it is feasible to employ the co-polarimetric backscattering coefficients and the polarimetric correlation backscattering coefficients for coastal wind field retrieval.展开更多
The method of moving target detection based on subimage cancellation for single-antenna airborne SAR is presented. First the subimage is obtained through frequency processing is pointed out. The imaging difference of ...The method of moving target detection based on subimage cancellation for single-antenna airborne SAR is presented. First the subimage is obtained through frequency processing is pointed out. The imaging difference of a stationary objects and moving object in the subimage based on the frequency division is analyzed from the fundamental principle. Then the developed method combines the shear averaging algorithm to focus on the moving target in the subimage, after the clutter suppression and the focusing position in each subimage is obtained. Next the observation model and the relative movement of the moving targets between the subimages estimate the moving targets. The theoretical analysis and simulation results demonstrate that the method is effective and can not only detect the moving targets, but also estimate their motion parameters precisely.展开更多
Oil spills pose a major threat to ocean ecosystems and their health. Synthetic aperture radar(SAR) sensors can detect oil spills on the sea surface. These oil spills appear as dark spots in SAR images. However, dark...Oil spills pose a major threat to ocean ecosystems and their health. Synthetic aperture radar(SAR) sensors can detect oil spills on the sea surface. These oil spills appear as dark spots in SAR images. However, dark formations can be caused by a number of phenomena. It is aimed to distinguishing oil spills or look-alike objects. A novel method based on a bidimensional empirical mode decomposition is proposed. The selected dark formations are first decomposed into several bidimensional intrinsic mode functions and the residue. Subsequently, 64 dimension feature sets are calculated using the Hilbert spectral analysis and five new features are extracted with a relief algorithm. Mahalanobis distances are then used for classification. Three data sets containing oil spills or look-alikes are used to test the accuracy rate of the method. The accuracy rate is more than 90%. The experimental results demonstrate that the novel method can detect oil spills validly and accurately.展开更多
The cryosphere is the frozen part of the Earth’s system. Snow and ice are the main constituents of the cryosphere and may be found in different states, such as snow, freshwater ice, sea ice, perma-frost, and continen...The cryosphere is the frozen part of the Earth’s system. Snow and ice are the main constituents of the cryosphere and may be found in different states, such as snow, freshwater ice, sea ice, perma-frost, and continental ice masses in the form of glaciers and ice sheets. The present review mainly deals with state-of-the-art applications of synthetic aperture radar (SAR) with a special emphasize on cryospheric information extraction. SAR is the most important active microwave remote sensing (RS) instrument for ice monitoring, which provides high-resolution images of the Earth’s surface. SAR is an ideal sensor in RS technology, which works in all-weather and day and night conditions to provide useful unprecedented information, especially in the cryospheric regions which are almost inaccessible areas on Earth. This paper addresses the technological evolution of SAR and its applications in studying the various components of the cryosphere. The arrival of SAR radically changed the capabilities of information extraction related to ice type, new ice formation, and ice thickness. SAR applications can be divided into two broad classes-polarimetric applications and interferometric applications. Polarimetric SAR has been effectively used for mapping calving fronts, crevasses, surface structures, sea ice, detection of icebergs, etc. The paper also summarizes both the operational and climate change research by using SAR for sea ice parameter detection. Digital elevation model (DEM) generation and glacier velocity mapping are the two most important applications used in cryosphere using SAR interferometry or interferometric SAR (InSAR). Space-borne InSAR techniques for measuring ice flow velocity and topography have developed rapidly over the last decade. InSAR is capable of measuring ice motion that has radically changed the science of glaciers and ice sheets. Measurement of temperate glacier velocities and surface characteristics by using airborne and space-borne interferometric satellite images have been the significant application in glaciology and cryospheric studies. Space-borne InSAR has contributed to major evolution in many research areas of glaciological study by measuring ice-stream flow velocity, improving understanding of ice-shelf processes, yielding velocity for flux-gate based mass-balance assessment, and mapping flow of mountain glaciers. The present review summarizes the salient development of SAR applications in cryosphere and glaciology.展开更多
For ballistic mid-course targets,in addition to constant orbital motion,the target or any structure on the target undergoes micro-motion dynamics,such as spin,precession and tumbling.The micro-motion characteristics o...For ballistic mid-course targets,in addition to constant orbital motion,the target or any structure on the target undergoes micro-motion dynamics,such as spin,precession and tumbling.The micro-motion characteristics of the ballistic mid-course targets were discussed.The target motion model and inverse synthetic aperture radar(ISAR) imaging model for this kind of targets were built.Then,the influence of micro-motion on ISAR imaging based on the established imaging model was presented.The computer simulation to get mid-course target echoes from static darkroom electromagnetic scattering data based on the established target motion model was realized.The imaging results of computer simulation show the validity of ISAR imaging analysis for micro-motion targets.展开更多
Target modeling and scattering function calculating are important prerequisites and groundwork for the synthetic aperture radar(SAR) imaging simulation.According to the difficult problems that normal methods cannot ...Target modeling and scattering function calculating are important prerequisites and groundwork for the synthetic aperture radar(SAR) imaging simulation.According to the difficult problems that normal methods cannot calculate the scattering function of electrically large object under the condition to wideband,an effective method of improved equivalent edge currents is presented and applied to SAR imaging simulation for the first time.This method improves calculating velocity and has relatively high precision.The concrete steps of applying the method are given.By way of the simulation experiment,the effectiveness of the method is verified.展开更多
Not confined to a certain point,such as waveform,this paper systematically studies the low-intercept radio frequency(RF)stealth design of synthetic aperture radar(SAR)from the system level.The study is carried out fro...Not confined to a certain point,such as waveform,this paper systematically studies the low-intercept radio frequency(RF)stealth design of synthetic aperture radar(SAR)from the system level.The study is carried out from two levels.In the first level,the maximum low-intercept range equation of the conventional SAR system is deduced firstly,and then the maximum low-intercept range equation of the multiple-input multiple-output SAR system is deduced.In the second level,the waveform design and imaging method of the low-intercept RF SAR system are given and verified by simulation.Finally,the main technical characteristics of the lowintercept RF stealth SAR system are given to guide the design of low-intercept RF stealth SAR system.展开更多
Speckle filtering is an indispensable pre-processing step for applications of polarimetric synthetic aperture radar (POLSAR), such as terrain classification, target detection, etc. As one of the most typical methods...Speckle filtering is an indispensable pre-processing step for applications of polarimetric synthetic aperture radar (POLSAR), such as terrain classification, target detection, etc. As one of the most typical methods, the polarimetric whitening filter (PWF) can be used to produce a minimum-speckle image by combining the complex elements of the scattering matrix, but polarimetric information is lost after the filtering process. A polarimetric filter based on subspaze decomposition which was proposed by Cu et al specializes in retrieving principle scattering characteristics, but the corresponding mean value of an image after filtering is not kept well. A new filter is proposed for improving the disadvantage based on subspace decomposition. Under the constraint that a weighted combination of the polarimetric SAR images equals to the output of the PWF, the Euclidean distance between an unfiltered parameter vector and a signal space vector is minimized so that noises can be reduced. It is also shown that the proposed method is equivalent to the subspace filter in the case of no constraint. Experimental results with the NASA/JPL airborne polarimetric SAR data demonstrate the effectiveness of the proposed method.展开更多
The scattering points in a plasma sheath characterized with coupled velocities can cause pulse compression mismatching,which results in displacement and energy diffusion in the onedimension range profile.To solve this...The scattering points in a plasma sheath characterized with coupled velocities can cause pulse compression mismatching,which results in displacement and energy diffusion in the onedimension range profile.To solve this problem,we deduce the echo model of the plasma-sheathenveloped reentry object.By estimating the coupled velocities,we propose a compensation method to correct the defocus of an inverse synthetic aperture radar(ISAR)image in range dimension to improve the quality of the ISAR images.The simulation results suggest that the echoes from different regions of the surface of the reentry object have various coupling velocities,and the higher the coupled velocity,the more serious the displacement and energy diffusion in the range dimension.Our proposed method can correct the range dimension aberration.Two measurement metrics were used to evaluate the improvement of the compensation method.展开更多
The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition...The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition can be influenced.For addressing this issue,a method for extracting ship targets with overlaps via the expectation maximization(EM)algorithm is pro-posed.First,the scatterers of ship targets are obtained via the target detection technique.Then,the EM algorithm is applied to extract the scatterers of a single ship target with a single IPP.Afterwards,a novel image amplitude estimation approach is pro-posed,with which the radar image of a single target with a sin-gle IPP can be generated.The proposed method can accom-plish IPP selection and targets separation in the image domain,which can improve the image quality and reserve the target information most possibly.Results of simulated and real mea-sured data demonstrate the effectiveness of the proposed method.展开更多
In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage o...In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage of polarimetric information of SAR images and the unsupervised classification method based on fuzzy set theory. Image quantization and image enhancement are used to preprocess the POLSAR data. Then the polarimetric information and Fuzzy C-Means (FCM) clustering algorithm are used to classify the preprocessed images. The advantages of this algorithm are the automated classification, its high classifica-tion accuracy, fast convergence and high stability. The effectiveness of this algorithm is demonstrated by ex-periments using SIR-C/X-SAR (Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar) data.展开更多
To automatically detect oil tanks in polarimetric synthetic aperture radar(SAR) images, a coastal oil tank detection method is proposed based on recognition of T-shaped harbor. First of all, the T-shaped harbor is d...To automatically detect oil tanks in polarimetric synthetic aperture radar(SAR) images, a coastal oil tank detection method is proposed based on recognition of T-shaped harbor. First of all, the T-shaped harbor is detected to locate the region of interest(ROI) of oil tanks. Then all suspicious targets in the ROI are extracted by the segmentation of strong scattering targets and the classifier of H/α. The template targets are selected from the suspicious targets by the combination of a proposed circular degree parameter and the similarity parameter(SP) of the polarimetric coherency matrix. Finally, oil tanks are detected according to the statistics of the similarity parameter between each suspicious target and template targets in ROI. Polarimetric SAR data acquired by RADARSAT-2 over Berkeley and Singapore areas are used for testing. Experiment results show that most of the targets are correctly detected and the overall detection rate is close to 80%.The false rate is effectively reduced by the proposed algorithm compared with the method without T-shaped harbor recognition.展开更多
Classification of intertidal area in synthetic aperture radar(SAR) images is an important yet challenging issue when considering the complicatedly and dramatically changing features of tidal fluctuation. The difficult...Classification of intertidal area in synthetic aperture radar(SAR) images is an important yet challenging issue when considering the complicatedly and dramatically changing features of tidal fluctuation. The difficulty of intertidal area classification is compounded because a high proportion of this area is frequently flooded by water, making statistical modeling methods with spatial contextual information often ineffective. Because polarimetric entropy and anisotropy play significant roles in characterizing intertidal areas, in this paper we propose a novel unsupervised contextual classification algorithm. The key point of the method is to combine the generalized extreme value(GEV) statistical model of the polarization features and the Markov random field(MRF) for contextual smoothing. A goodness-of-fit test is added to determine the significance of the components of the statistical model. The final classification results are obtained by effectively combining the results of polarimetric entropy and anisotropy. Experimental results of the polarimetric data obtained by the Chinese Gaofen-3 SAR satellite demonstrate the feasibility and superiority of the proposed classification algorithm.展开更多
Speckle effects on classification results can be sup- pressed to some extent by introducing the contextual information. An unsupervised classification algorithm is proposed for polarimetric synthetic aperture radar (...Speckle effects on classification results can be sup- pressed to some extent by introducing the contextual information. An unsupervised classification algorithm is proposed for polarimetric synthetic aperture radar (POLSAR) images based on the mean shift (MS) segmentation and Markov random field (MRF). First, polarimetdc features are exacted by target decomposition for MS segmentation. An initial classification is executed by using the target decomposition and the agglomerative hierarchical clus- tering algorithm. Thereafter, a classification step based on MRF is performed by using the mean coherence matrices obtained for each segment. Under the MRF framework, the smoothness term is defined according to the distance between neighboring areas. By using POLSAR images acquired by the German Aerospace Centre and National Aeronautics and Space Administration/Jet Propulsion Laboratory, the experimental results confirm that the proposed method has higher accuracy and better regional connectivity than other classification methods.展开更多
A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of...A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of targets are extracted from 2D SAR images. Secondly, similarity measure is developed based on 2D attributed scatter centers' location, type, and radargrammetry principle between multiple SAR images. By this similarity, we can associate 2D scatter centers and then obtain candidate 3D scattering centers. Thirdly, these candidate scattering centers are clustered in 3D space to reconstruct final 3D positions. Compared with presented methods, the proposed method has a capability of describing distributed scattering center, reduces false and missing 3D scattering centers, and has fewer restrictionson modeling data. Finally, results of experiments have demonstrated the effectiveness of the proposed method.展开更多
SAR images commonly suffer fromspeckle noise,posing a significant challenge in their analysis and interpretation.Existing convolutional neural network(CNN)based despeckling methods have shown great performance in remo...SAR images commonly suffer fromspeckle noise,posing a significant challenge in their analysis and interpretation.Existing convolutional neural network(CNN)based despeckling methods have shown great performance in removing speckle noise.However,these CNN-basedmethods have a fewlimitations.They do not decouple complex background information in amulti-resolutionmanner.Moreover,they have deep network structures thatmay result in many parameters,limiting their applicability tomobile devices.Furthermore,extracting key speckle information in the presence of complex background is also a major problem with SAR.The proposed study addresses these limitations by introducing a lightweight pyramid and attention-based despeckling(PAN-Despeck)network.The primary objective is to enhance image quality and enable improved information interpretation,particularly on mobile devices and scenarios involving complex backgrounds.The PAN-Despeck network leverages domainspecific knowledge and integrates Gaussian Laplacian image pyramid decomposition for multi-resolution image analysis.By utilizing this approach,complex background information can be effectively decoupled,leading to enhanced despeckling performance.Furthermore,the attention mechanism selectively focuses on key speckle features and facilitates complex background removal.The network incorporates recursive and residual blocks to ensure computational efficiency and accelerate training speed,making it lightweight while maintaining high performance.Through comprehensive evaluations,it is demonstrated that PAN-Despeck outperforms existing image restoration methods.With an impressive average peak signal-to-noise ratio(PSNR)of 28.355114 and a remarkable structural similarity index(SSIM)of 0.905467,it demonstrates exceptional performance in effectively reducing speckle noise in SAR images.The source code for the PAN-DeSpeck network is available on GitHub.展开更多
Based on dual-frequencies dual-apertures spaceborne SAR (Synthetic Aperture Radar), a new SAR system with four receiving channels and two operation modes is presented in this paper, SAR imaging and Moving Target Ind...Based on dual-frequencies dual-apertures spaceborne SAR (Synthetic Aperture Radar), a new SAR system with four receiving channels and two operation modes is presented in this paper, SAR imaging and Moving Target Indication (MTI) are studied in this system. High resolution imaging with wide swath is implemented by the Mode Ⅰ, and MTI is completed by the Mode Ⅱ. High azimuth resolution is achieved by the Displaced Phase Center (DPC) multibeam technique. And the Coherent Accumulation (CA) method, which combines dual channels data of different carrier frequency, is used to enhance the range resolution. For the data of different carrier frequency, the two aperture interferometric processing is executed to implement clutter cancellation, respectively. And the couple of clutter suppressed data are employed to implement Dual Carrier Frequency Conjugate Processing (DCFCP), then both slow and fast moving targets detection can be completed, followed by moving target imaging. The simulation results show the validity of the signal processing method of this new SAR system.展开更多
基金The National Natural Science Foundation of China under contract Nos 41576170 and 41376179the Public Science and Technology Research Funds Projects of Ocean(Ocean University of China) under contract No.2013418025-2
文摘Compared with single-polarized synthetic aperture radar (SAR) images, full polarimetric SAIl images contain not only geometrical and backward scattering characteristics, but also the polarization features of the scattering targets. Therefore, the polarimetric SAR has more advantages for oil spill detection on the sea surface. As a crucial step in the oil spill detection, a feature extraction directly influences the accuracy of oil spill discrimination. The polarimetric features of sea oil spills, such as polarimetric entropy, average scatter angle, in the full polarimetric SAR images are analyzed firstly. And a new polarimetric parameter P which reflects the proportion between Bragg and specular scattering signals is proposed. In order to investigate the capability of the polarimetric features for observing an oil spill, systematic comparisons and analyses of the multipolarization features are provided on the basis of the full polarimetric SAR images acquired by SIR-C/X-SAR and Radarsat-2. The experiment results show that in C-band SAR images the oil spills can be detected more easily than in L-band SAR images under low to moderate wind speed conditions. Moreover, it also finds that the new polarimetric parameter is sensitive to the sea surface scattering mechanisms. And the experiment results demonstrate that the new polarimetric parameter and pedestal height perform better than other polarimetric parameters for the oil spill detection in the C-band SAR images.
基金The National Natural Science Foundation of China under contract Nos 41306186,41076012 and 41276019the Youth Science Fund Project of State Oceanic Administration of China
文摘Coastal winds are strongly influenced by topology and discontinuity between land and sea surfaces. Wind assessment from remote sensing in such a complex area remains a challenge. Space-borne scatterometer does not provide any information about the coastal wind field, as the coarse spatial resolution hampers the radar backscattering. Synthetic aperture radar (SAR) with a high spatial resolution and all-weather observation abilities has become one of the most important tools for ocean wind retrieval, especially in the coastal area. Conventional methods of wind field retrieval from SAR, however, require wind direction as initial information, such as the wind direction from numerical weather prediction models (NWP), which may not match the time of SAR image acquiring. Fortunately, the polarimetric observations of SAR enable independent wind retrieval from SAR images alone. In order to accurately measure coastal wind fields, this paper proposes a new method of using co-polarization backscattering coefficients from polarimetric SAR observations up to polarimetric correlation backscattering coefficients, which are acquired from the conjugate product of co-polarization backscatter and cross-polarization backscatter. Co-polarization backscattering coefficients and polarimetric correlation backscattering coefficients are obtained form Radarsat-2 single-look complex (SLC) data.The maximum likelihood estimation is used to gain the initial results followed by the coarse spatial filtering and fine spatial filtering. Wind direction accuracy of the final inversion results is 10.67 with a wind speed accuracy of 0.32 m/s. Unlike previous methods, the methods described in this article utilize the SAR data itself to obtain the wind vectors and do not need external wind directional information. High spatial resolution and high accuracy are the most important features of the method described herein since the use of full polarimetric observations contains more information about the space measured.This article is a useful addition to the work of independent SAR wind retrieval. The experimental results herein show that it is feasible to employ the co-polarimetric backscattering coefficients and the polarimetric correlation backscattering coefficients for coastal wind field retrieval.
文摘The method of moving target detection based on subimage cancellation for single-antenna airborne SAR is presented. First the subimage is obtained through frequency processing is pointed out. The imaging difference of a stationary objects and moving object in the subimage based on the frequency division is analyzed from the fundamental principle. Then the developed method combines the shear averaging algorithm to focus on the moving target in the subimage, after the clutter suppression and the focusing position in each subimage is obtained. Next the observation model and the relative movement of the moving targets between the subimages estimate the moving targets. The theoretical analysis and simulation results demonstrate that the method is effective and can not only detect the moving targets, but also estimate their motion parameters precisely.
基金The National Science and Technology Support Project under contract No.2014BAB12B02the Natural Science Foundation of Liaoning Province under contract No.201602042
文摘Oil spills pose a major threat to ocean ecosystems and their health. Synthetic aperture radar(SAR) sensors can detect oil spills on the sea surface. These oil spills appear as dark spots in SAR images. However, dark formations can be caused by a number of phenomena. It is aimed to distinguishing oil spills or look-alike objects. A novel method based on a bidimensional empirical mode decomposition is proposed. The selected dark formations are first decomposed into several bidimensional intrinsic mode functions and the residue. Subsequently, 64 dimension feature sets are calculated using the Hilbert spectral analysis and five new features are extracted with a relief algorithm. Mahalanobis distances are then used for classification. Three data sets containing oil spills or look-alikes are used to test the accuracy rate of the method. The accuracy rate is more than 90%. The experimental results demonstrate that the novel method can detect oil spills validly and accurately.
文摘The cryosphere is the frozen part of the Earth’s system. Snow and ice are the main constituents of the cryosphere and may be found in different states, such as snow, freshwater ice, sea ice, perma-frost, and continental ice masses in the form of glaciers and ice sheets. The present review mainly deals with state-of-the-art applications of synthetic aperture radar (SAR) with a special emphasize on cryospheric information extraction. SAR is the most important active microwave remote sensing (RS) instrument for ice monitoring, which provides high-resolution images of the Earth’s surface. SAR is an ideal sensor in RS technology, which works in all-weather and day and night conditions to provide useful unprecedented information, especially in the cryospheric regions which are almost inaccessible areas on Earth. This paper addresses the technological evolution of SAR and its applications in studying the various components of the cryosphere. The arrival of SAR radically changed the capabilities of information extraction related to ice type, new ice formation, and ice thickness. SAR applications can be divided into two broad classes-polarimetric applications and interferometric applications. Polarimetric SAR has been effectively used for mapping calving fronts, crevasses, surface structures, sea ice, detection of icebergs, etc. The paper also summarizes both the operational and climate change research by using SAR for sea ice parameter detection. Digital elevation model (DEM) generation and glacier velocity mapping are the two most important applications used in cryosphere using SAR interferometry or interferometric SAR (InSAR). Space-borne InSAR techniques for measuring ice flow velocity and topography have developed rapidly over the last decade. InSAR is capable of measuring ice motion that has radically changed the science of glaciers and ice sheets. Measurement of temperate glacier velocities and surface characteristics by using airborne and space-borne interferometric satellite images have been the significant application in glaciology and cryospheric studies. Space-borne InSAR has contributed to major evolution in many research areas of glaciological study by measuring ice-stream flow velocity, improving understanding of ice-shelf processes, yielding velocity for flux-gate based mass-balance assessment, and mapping flow of mountain glaciers. The present review summarizes the salient development of SAR applications in cryosphere and glaciology.
基金Project(61360020102) supported by the National Basic Research Development Program of China
文摘For ballistic mid-course targets,in addition to constant orbital motion,the target or any structure on the target undergoes micro-motion dynamics,such as spin,precession and tumbling.The micro-motion characteristics of the ballistic mid-course targets were discussed.The target motion model and inverse synthetic aperture radar(ISAR) imaging model for this kind of targets were built.Then,the influence of micro-motion on ISAR imaging based on the established imaging model was presented.The computer simulation to get mid-course target echoes from static darkroom electromagnetic scattering data based on the established target motion model was realized.The imaging results of computer simulation show the validity of ISAR imaging analysis for micro-motion targets.
基金supported by the National Natural Science Foundation of China(60871070)
文摘Target modeling and scattering function calculating are important prerequisites and groundwork for the synthetic aperture radar(SAR) imaging simulation.According to the difficult problems that normal methods cannot calculate the scattering function of electrically large object under the condition to wideband,an effective method of improved equivalent edge currents is presented and applied to SAR imaging simulation for the first time.This method improves calculating velocity and has relatively high precision.The concrete steps of applying the method are given.By way of the simulation experiment,the effectiveness of the method is verified.
基金supported by the National Key R&D Program of China(2017YFC1405600)the Fundamental Research Funds for the Central Universities(JB180213)
文摘Not confined to a certain point,such as waveform,this paper systematically studies the low-intercept radio frequency(RF)stealth design of synthetic aperture radar(SAR)from the system level.The study is carried out from two levels.In the first level,the maximum low-intercept range equation of the conventional SAR system is deduced firstly,and then the maximum low-intercept range equation of the multiple-input multiple-output SAR system is deduced.In the second level,the waveform design and imaging method of the low-intercept RF SAR system are given and verified by simulation.Finally,the main technical characteristics of the lowintercept RF stealth SAR system are given to guide the design of low-intercept RF stealth SAR system.
基金supported by the National Natural Science Foundation of China (40571099)the Research Fund for the Doctoral Program of Higher Education of China.
文摘Speckle filtering is an indispensable pre-processing step for applications of polarimetric synthetic aperture radar (POLSAR), such as terrain classification, target detection, etc. As one of the most typical methods, the polarimetric whitening filter (PWF) can be used to produce a minimum-speckle image by combining the complex elements of the scattering matrix, but polarimetric information is lost after the filtering process. A polarimetric filter based on subspaze decomposition which was proposed by Cu et al specializes in retrieving principle scattering characteristics, but the corresponding mean value of an image after filtering is not kept well. A new filter is proposed for improving the disadvantage based on subspace decomposition. Under the constraint that a weighted combination of the polarimetric SAR images equals to the output of the PWF, the Euclidean distance between an unfiltered parameter vector and a signal space vector is minimized so that noises can be reduced. It is also shown that the proposed method is equivalent to the subspace filter in the case of no constraint. Experimental results with the NASA/JPL airborne polarimetric SAR data demonstrate the effectiveness of the proposed method.
基金supported by National Natural Science Foundation of China(No.61971330)。
文摘The scattering points in a plasma sheath characterized with coupled velocities can cause pulse compression mismatching,which results in displacement and energy diffusion in the onedimension range profile.To solve this problem,we deduce the echo model of the plasma-sheathenveloped reentry object.By estimating the coupled velocities,we propose a compensation method to correct the defocus of an inverse synthetic aperture radar(ISAR)image in range dimension to improve the quality of the ISAR images.The simulation results suggest that the echoes from different regions of the surface of the reentry object have various coupling velocities,and the higher the coupled velocity,the more serious the displacement and energy diffusion in the range dimension.Our proposed method can correct the range dimension aberration.Two measurement metrics were used to evaluate the improvement of the compensation method.
基金This work was supported by the National Science Fund for Distinguished Young Scholars(62325104).
文摘The quality of synthetic aperture radar(SAR)image degrades in the case of multiple imaging projection planes(IPPs)and multiple overlapping ship targets,and then the performance of target classification and recognition can be influenced.For addressing this issue,a method for extracting ship targets with overlaps via the expectation maximization(EM)algorithm is pro-posed.First,the scatterers of ship targets are obtained via the target detection technique.Then,the EM algorithm is applied to extract the scatterers of a single ship target with a single IPP.Afterwards,a novel image amplitude estimation approach is pro-posed,with which the radar image of a single target with a sin-gle IPP can be generated.The proposed method can accom-plish IPP selection and targets separation in the image domain,which can improve the image quality and reserve the target information most possibly.Results of simulated and real mea-sured data demonstrate the effectiveness of the proposed method.
基金Supported by the University Doctorate Special Research Fund (No. 20030614001) and the Youth Scholarship Leader Fund of Univ. of Electro. Sci. and Tech. of China.
文摘In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage of polarimetric information of SAR images and the unsupervised classification method based on fuzzy set theory. Image quantization and image enhancement are used to preprocess the POLSAR data. Then the polarimetric information and Fuzzy C-Means (FCM) clustering algorithm are used to classify the preprocessed images. The advantages of this algorithm are the automated classification, its high classifica-tion accuracy, fast convergence and high stability. The effectiveness of this algorithm is demonstrated by ex-periments using SIR-C/X-SAR (Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar) data.
基金supported by the National Key R&D Program of China(2017YFB0502700)the National Natural Science Foundation of China(61490693+3 种基金61771043)the High-Resolution Earth Observation Systems(41-Y20A14-9001-15/1630-Y20A12-9004-15/1630-Y20A10-9001-15/16)
文摘To automatically detect oil tanks in polarimetric synthetic aperture radar(SAR) images, a coastal oil tank detection method is proposed based on recognition of T-shaped harbor. First of all, the T-shaped harbor is detected to locate the region of interest(ROI) of oil tanks. Then all suspicious targets in the ROI are extracted by the segmentation of strong scattering targets and the classifier of H/α. The template targets are selected from the suspicious targets by the combination of a proposed circular degree parameter and the similarity parameter(SP) of the polarimetric coherency matrix. Finally, oil tanks are detected according to the statistics of the similarity parameter between each suspicious target and template targets in ROI. Polarimetric SAR data acquired by RADARSAT-2 over Berkeley and Singapore areas are used for testing. Experiment results show that most of the targets are correctly detected and the overall detection rate is close to 80%.The false rate is effectively reduced by the proposed algorithm compared with the method without T-shaped harbor recognition.
基金Project supported by the National Natural Science Foundation of China(No.61331017)
文摘Classification of intertidal area in synthetic aperture radar(SAR) images is an important yet challenging issue when considering the complicatedly and dramatically changing features of tidal fluctuation. The difficulty of intertidal area classification is compounded because a high proportion of this area is frequently flooded by water, making statistical modeling methods with spatial contextual information often ineffective. Because polarimetric entropy and anisotropy play significant roles in characterizing intertidal areas, in this paper we propose a novel unsupervised contextual classification algorithm. The key point of the method is to combine the generalized extreme value(GEV) statistical model of the polarization features and the Markov random field(MRF) for contextual smoothing. A goodness-of-fit test is added to determine the significance of the components of the statistical model. The final classification results are obtained by effectively combining the results of polarimetric entropy and anisotropy. Experimental results of the polarimetric data obtained by the Chinese Gaofen-3 SAR satellite demonstrate the feasibility and superiority of the proposed classification algorithm.
基金supported by the National Natural Science Foundation of China(6100118741001256+1 种基金40971219)the National High Technology Research and Development Program of China(863 Program)(2013 AA122301)
文摘Speckle effects on classification results can be sup- pressed to some extent by introducing the contextual information. An unsupervised classification algorithm is proposed for polarimetric synthetic aperture radar (POLSAR) images based on the mean shift (MS) segmentation and Markov random field (MRF). First, polarimetdc features are exacted by target decomposition for MS segmentation. An initial classification is executed by using the target decomposition and the agglomerative hierarchical clus- tering algorithm. Thereafter, a classification step based on MRF is performed by using the mean coherence matrices obtained for each segment. Under the MRF framework, the smoothness term is defined according to the distance between neighboring areas. By using POLSAR images acquired by the German Aerospace Centre and National Aeronautics and Space Administration/Jet Propulsion Laboratory, the experimental results confirm that the proposed method has higher accuracy and better regional connectivity than other classification methods.
基金Supported by National Basic Research Development Program of China(973 Program)(2007CB311006) National Natural Science Foundation of China(60602026),Acknowledgement The authors would like to thank ESA (http://earth.esa. int/polsarpro/datasets.html) for providing the data.
文摘A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of targets are extracted from 2D SAR images. Secondly, similarity measure is developed based on 2D attributed scatter centers' location, type, and radargrammetry principle between multiple SAR images. By this similarity, we can associate 2D scatter centers and then obtain candidate 3D scattering centers. Thirdly, these candidate scattering centers are clustered in 3D space to reconstruct final 3D positions. Compared with presented methods, the proposed method has a capability of describing distributed scattering center, reduces false and missing 3D scattering centers, and has fewer restrictionson modeling data. Finally, results of experiments have demonstrated the effectiveness of the proposed method.
文摘SAR images commonly suffer fromspeckle noise,posing a significant challenge in their analysis and interpretation.Existing convolutional neural network(CNN)based despeckling methods have shown great performance in removing speckle noise.However,these CNN-basedmethods have a fewlimitations.They do not decouple complex background information in amulti-resolutionmanner.Moreover,they have deep network structures thatmay result in many parameters,limiting their applicability tomobile devices.Furthermore,extracting key speckle information in the presence of complex background is also a major problem with SAR.The proposed study addresses these limitations by introducing a lightweight pyramid and attention-based despeckling(PAN-Despeck)network.The primary objective is to enhance image quality and enable improved information interpretation,particularly on mobile devices and scenarios involving complex backgrounds.The PAN-Despeck network leverages domainspecific knowledge and integrates Gaussian Laplacian image pyramid decomposition for multi-resolution image analysis.By utilizing this approach,complex background information can be effectively decoupled,leading to enhanced despeckling performance.Furthermore,the attention mechanism selectively focuses on key speckle features and facilitates complex background removal.The network incorporates recursive and residual blocks to ensure computational efficiency and accelerate training speed,making it lightweight while maintaining high performance.Through comprehensive evaluations,it is demonstrated that PAN-Despeck outperforms existing image restoration methods.With an impressive average peak signal-to-noise ratio(PSNR)of 28.355114 and a remarkable structural similarity index(SSIM)of 0.905467,it demonstrates exceptional performance in effectively reducing speckle noise in SAR images.The source code for the PAN-DeSpeck network is available on GitHub.
基金Supported by the National Natural Science Foundation of China (NSFC) (No.60772103)China National Key Laboratory of Microwave Imaging Technology Foundation (No.9140C1903050804)
文摘Based on dual-frequencies dual-apertures spaceborne SAR (Synthetic Aperture Radar), a new SAR system with four receiving channels and two operation modes is presented in this paper, SAR imaging and Moving Target Indication (MTI) are studied in this system. High resolution imaging with wide swath is implemented by the Mode Ⅰ, and MTI is completed by the Mode Ⅱ. High azimuth resolution is achieved by the Displaced Phase Center (DPC) multibeam technique. And the Coherent Accumulation (CA) method, which combines dual channels data of different carrier frequency, is used to enhance the range resolution. For the data of different carrier frequency, the two aperture interferometric processing is executed to implement clutter cancellation, respectively. And the couple of clutter suppressed data are employed to implement Dual Carrier Frequency Conjugate Processing (DCFCP), then both slow and fast moving targets detection can be completed, followed by moving target imaging. The simulation results show the validity of the signal processing method of this new SAR system.