In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage o...In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage of polarimetric information of SAR images and the unsupervised classification method based on fuzzy set theory. Image quantization and image enhancement are used to preprocess the POLSAR data. Then the polarimetric information and Fuzzy C-Means (FCM) clustering algorithm are used to classify the preprocessed images. The advantages of this algorithm are the automated classification, its high classifica-tion accuracy, fast convergence and high stability. The effectiveness of this algorithm is demonstrated by ex-periments using SIR-C/X-SAR (Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar) data.展开更多
Speckle effects on classification results can be sup- pressed to some extent by introducing the contextual information. An unsupervised classification algorithm is proposed for polarimetric synthetic aperture radar (...Speckle effects on classification results can be sup- pressed to some extent by introducing the contextual information. An unsupervised classification algorithm is proposed for polarimetric synthetic aperture radar (POLSAR) images based on the mean shift (MS) segmentation and Markov random field (MRF). First, polarimetdc features are exacted by target decomposition for MS segmentation. An initial classification is executed by using the target decomposition and the agglomerative hierarchical clus- tering algorithm. Thereafter, a classification step based on MRF is performed by using the mean coherence matrices obtained for each segment. Under the MRF framework, the smoothness term is defined according to the distance between neighboring areas. By using POLSAR images acquired by the German Aerospace Centre and National Aeronautics and Space Administration/Jet Propulsion Laboratory, the experimental results confirm that the proposed method has higher accuracy and better regional connectivity than other classification methods.展开更多
Classification of intertidal area in synthetic aperture radar(SAR) images is an important yet challenging issue when considering the complicatedly and dramatically changing features of tidal fluctuation. The difficult...Classification of intertidal area in synthetic aperture radar(SAR) images is an important yet challenging issue when considering the complicatedly and dramatically changing features of tidal fluctuation. The difficulty of intertidal area classification is compounded because a high proportion of this area is frequently flooded by water, making statistical modeling methods with spatial contextual information often ineffective. Because polarimetric entropy and anisotropy play significant roles in characterizing intertidal areas, in this paper we propose a novel unsupervised contextual classification algorithm. The key point of the method is to combine the generalized extreme value(GEV) statistical model of the polarization features and the Markov random field(MRF) for contextual smoothing. A goodness-of-fit test is added to determine the significance of the components of the statistical model. The final classification results are obtained by effectively combining the results of polarimetric entropy and anisotropy. Experimental results of the polarimetric data obtained by the Chinese Gaofen-3 SAR satellite demonstrate the feasibility and superiority of the proposed classification algorithm.展开更多
This paper proposed to use double polarization synthetic aperture radar (SAR) image to classify surface feature, based on DEM. It takes fully use of the polarization information and external information. This pa-per u...This paper proposed to use double polarization synthetic aperture radar (SAR) image to classify surface feature, based on DEM. It takes fully use of the polarization information and external information. This pa-per utilizes ENVISAT ASAR APP double-polarization data of Poyang lake area in Jiangxi Province. Com-pared with traditional pixel-based classification, this paper fully uses object features (color, shape, hierarchy) and accessorial DEM information. The classification accuracy improves from the original 73.7% to 91.84%. The result shows that object-oriented classification technology is suitable for double polarization SAR’s high precision classification.展开更多
An object-based approach is proposed for land cover classification using optimal polarimetric parameters.The ability to identify targets is effectively enhanced by the integration of SAR and optical images.The innovat...An object-based approach is proposed for land cover classification using optimal polarimetric parameters.The ability to identify targets is effectively enhanced by the integration of SAR and optical images.The innovation of the presented method can be summarized in the following two main points:①estimating polarimetric parameters(H-A-Alpha decomposition)through the optical image as a driver;②a multi-resolution segmentation based on the optical image only is deployed to refine classification results.The proposed method is verified by using Sentinel-1/2 datasets over the Bakersfield area,California.The results are compared against those from pixel-based SVM classification using the ground truth from the National Land Cover Database(NLCD).A detailed accuracy assessment complied with seven classes shows that the proposed method outperforms the conventional approach by around 10%,with an overall accuracy of 92.6%over regions with rich texture.展开更多
The different approaches used for target decomposition (TD) theory in radar polarimetry are reviewed and three main types of theorems are introduced: those based on Mueller matrix, those using an eigenvector analys...The different approaches used for target decomposition (TD) theory in radar polarimetry are reviewed and three main types of theorems are introduced: those based on Mueller matrix, those using an eigenvector analysis of the coherency matrix, and those employing coherent decomposition of the scattering matrix. Support vector machine (SVM), as a novel approach in pattern recognition, has demonstrated success in many fields. A new algorithm of target classification, by combining target decomposition and the support vector machine, is proposed. To conduct the experiment, the polarimetric synthetic aperture radar (SAR) data are used. Experimental results show that it is feasible and efficient to target classification by applying target decomposition to extract scattering mechanisms, and the effects of kernel function and its parameters on the classification efficiency are significant.展开更多
To study the scene classification in the Synthetic Aperture Radar (SAR) image, a novel method based on kernel estimate, with the Maxkov context and Dempster-Shafer evidence theory is proposed. Initially, a nonpaxame...To study the scene classification in the Synthetic Aperture Radar (SAR) image, a novel method based on kernel estimate, with the Maxkov context and Dempster-Shafer evidence theory is proposed. Initially, a nonpaxametric Probability Density Function (PDF) estimate method is introduced, to describe the scene of SAR images. And then under the Maxkov context, both the determinate PDF and the kernel estimate method axe adopted respectively, to form a primary classification. Next, the primary classification results are fused using the evidence theory in an unsupervised way to get the scene classification. Finally, a regularization step is used, in which an iterated maximum selecting approach is introduced to control the fragments and modify the errors of the classification. Use of the kernel estimate and evidence theory can describe the complicated scenes with little prior knowledge and eliminate the ambiguities of the primary classification results. Experimental results on real SAR images illustrate a rather impressive performance.展开更多
We propose a novel statistical distribution texton(s-texton) feature for synthetic aperture radar(SAR) image classification. Motivated by the traditional texton feature, the framework of texture analysis, and the impo...We propose a novel statistical distribution texton(s-texton) feature for synthetic aperture radar(SAR) image classification. Motivated by the traditional texton feature, the framework of texture analysis, and the importance of statistical distribution in SAR images, the s-texton feature is developed based on the idea that parameter estimation of the statistical distribution can replace the filtering operation in the traditional texture analysis of SAR images. In the process of extracting the s-texton feature, several strategies are adopted, including pre-processing, spatial gridding, parameter estimation, texton clustering, and histogram statistics. Experimental results on Terra SAR data demonstrate the effectiveness of the proposed s-texton feature.展开更多
Improving the target-clutter ratio (TCR) of moving targets in synthetic aperture radar (SAR), imagery is very important for target detection and identification. In this paper, using the Cloude's decomposition the...Improving the target-clutter ratio (TCR) of moving targets in synthetic aperture radar (SAR), imagery is very important for target detection and identification. In this paper, using the Cloude's decomposition theory, an average eovarianee matrix can be decomposed into a summation of matrices representing three different scattering processes: the single bounce scattering, double bounce scattering, and diffuse scattering. A new idea of using the combination of the three components to enhance the contrast of an image is proposed. In order to compare with the polarimetric contrast enhancement method based on HH, HV, and W data, ship areas of two combinatorial intensity images are detected by image binarization. Experimental results show that the method proposed in this paper provides better contrast.展开更多
A new hybrid Freeman/eigenvalue decomposition based on the orientation angle compensation and the various extended volume models for polarimetric synthetic aperture radar(PolSAR) data are presented. There are three st...A new hybrid Freeman/eigenvalue decomposition based on the orientation angle compensation and the various extended volume models for polarimetric synthetic aperture radar(PolSAR) data are presented. There are three steps in the novel version of the three-component model-based decomposition.Firstly, two special unitary transform matrices are applied on the coherency matrix for deorientation to decrease the correlation between the co-polarized term and the cross-polarized term.Secondly, two new conditions are proposed to distinguish the manmade structures and the nature media after the orientation angle compensation. Finally, in order to adapt to the scattering properties of different media, five different volume scattering models are used to decompose the coherency matrix. These new conditions pre-resolves man-made structures, which is beneficial to the subsequent selection of a more suitable volume scattering model.Fully PolSAR data on San Francisco are used in the experiments to prove the efficiency of the proposed hybrid Freeman/eigenvalue decomposition.展开更多
For better interpretation of synthetic aperture radar(SAR) images,the speckle filtering is an important issue.In the area of speckle filtering,the proper averaging of samples with similar scattering characteristics ...For better interpretation of synthetic aperture radar(SAR) images,the speckle filtering is an important issue.In the area of speckle filtering,the proper averaging of samples with similar scattering characteristics is of great importance.However,existing filtering algorithms are either lack of a similarity judgment of scattering characteristics or using only intensity information for similarity judgment.A novel polarimetric SAR(PolSAR) speckle filtering algorithm based on the mean shift theory is proposed.As polarimetric covariance matrices or coherency matrices form Riemannian manifold,the pixels with similar scattering characteristics gather closely and those with different scattering characteristics separate in this hyperspace.By using the range-spatial joint mean shift theory in Riemannian manifold,the pixels chosen for averaging are ensured to be close not only in scattering characteristics but also in the spatial domain.German Aerospace Center(DLR) L-Band Experiment SAR(E-SAR) data and East China Research Institute of Electronic Engineering(ECRIEE) PolSAR data are used to demonstrate the efficiency of the proposed algorithm.The filtering results of two commonly used speckle filtering algorithms,refined Lee filtering algorithm and intensity driven adaptive neighborhood(IDAN) filtering algorithm,are also presented for the comparison purpose.Experiment results show that the proposed speckle filtering algorithm achieves a good performance in terms of speckle filtering,edge protection as well as polarimetric characteristics preservation.展开更多
We propose a multi-sensor multi-spectral and bi-temporal dual-polarimetric Synthetic Aperture Radar(SAR) data integration scheme for dry/wet snow mapping using Sentinel-2 and Sentinel-1 data which are freely available...We propose a multi-sensor multi-spectral and bi-temporal dual-polarimetric Synthetic Aperture Radar(SAR) data integration scheme for dry/wet snow mapping using Sentinel-2 and Sentinel-1 data which are freely available to the research community. The integration is carried out by incorporating the information retrieved from ratio images of the conventional method for wet snow mapping and the multispectral data in two different frameworks. Firstly, a simple differencing scheme is employed for dry/wet snow mapping, where the snow cover area is derived using the Normalized Differenced Snow Index(NDSI). In the second framework, the ratio images are stacked with the multispectral bands and this stack is used for supervised and unsupervised classification using support vector machines for dry/wet snow mapping. We also investigate the potential of a state of the art backscatter model for the identification of dry/wet snow using Sentinel-1 data. The results are validated using a reference map derived from RADARSAT-2 full polarimetric SAR data. A good agreement was observed between the results and the reference data with an overall accuracy greater than 0.78 for the different blending techniques examined. For all the proposed frameworks, the wet snow was better identified. The coefficient of determination between the snow wetness derived from the backscatter model and the reference based on RADARSAT-2 data was observed to be 0.58 with a significantly higher root mean square error of 1.03 % by volume.展开更多
The relationships among an ocean wave spectrum,a fully polarimetric coherence matrix,and radar parameters are deduced with an electromagnetic wave theory.Furthermore,the relationship between the polarimetric entropy a...The relationships among an ocean wave spectrum,a fully polarimetric coherence matrix,and radar parameters are deduced with an electromagnetic wave theory.Furthermore,the relationship between the polarimetric entropy and ocean wave spectrum is established based on the definition of entropy and a twoscale scattering model of the ocean surface.It is the first time that the polarimetric entropy of the ocean surface is presented in theory.Meanwhile,the relationships among the fully polarimetric entropy and the parameters related to radar and ocean are discussed.The study is the basis of further monitoring targets on the ocean surface and deriving oceanic information with the entropy from the ocean surface.The contrast enhancement between human-made targets and the ocean surface with the entropy is presented with quad-pol airborne synthetic aperture radar(AIRSAR) data.展开更多
A simple and fast approach based on eigenvalue similarity metric for Polarimetric SAR image segmentation of Land Cover is proposed in this paper. The approach uses eigenvalues of the coherency matrix as to construct s...A simple and fast approach based on eigenvalue similarity metric for Polarimetric SAR image segmentation of Land Cover is proposed in this paper. The approach uses eigenvalues of the coherency matrix as to construct similarity metric of clustering algorithm to segment SAR image. The Mahalanobis distance is used to metric pairwise similarity between pixels to avoid the manual scale parameter tuning in previous spectral clustering method. Furthermore, the spatial coherence constraints and spectral clustering ensemble are employed to stabilize and improve the segmentation performance. All experiments are carried out on three sets of Polarimetric SAR data. The experimental results show that the proposed method is superior to other comparison methods.展开更多
基金Supported by the University Doctorate Special Research Fund (No. 20030614001) and the Youth Scholarship Leader Fund of Univ. of Electro. Sci. and Tech. of China.
文摘In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage of polarimetric information of SAR images and the unsupervised classification method based on fuzzy set theory. Image quantization and image enhancement are used to preprocess the POLSAR data. Then the polarimetric information and Fuzzy C-Means (FCM) clustering algorithm are used to classify the preprocessed images. The advantages of this algorithm are the automated classification, its high classifica-tion accuracy, fast convergence and high stability. The effectiveness of this algorithm is demonstrated by ex-periments using SIR-C/X-SAR (Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar) data.
基金supported by the National Natural Science Foundation of China(6100118741001256+1 种基金40971219)the National High Technology Research and Development Program of China(863 Program)(2013 AA122301)
文摘Speckle effects on classification results can be sup- pressed to some extent by introducing the contextual information. An unsupervised classification algorithm is proposed for polarimetric synthetic aperture radar (POLSAR) images based on the mean shift (MS) segmentation and Markov random field (MRF). First, polarimetdc features are exacted by target decomposition for MS segmentation. An initial classification is executed by using the target decomposition and the agglomerative hierarchical clus- tering algorithm. Thereafter, a classification step based on MRF is performed by using the mean coherence matrices obtained for each segment. Under the MRF framework, the smoothness term is defined according to the distance between neighboring areas. By using POLSAR images acquired by the German Aerospace Centre and National Aeronautics and Space Administration/Jet Propulsion Laboratory, the experimental results confirm that the proposed method has higher accuracy and better regional connectivity than other classification methods.
基金Project supported by the National Natural Science Foundation of China(No.61331017)
文摘Classification of intertidal area in synthetic aperture radar(SAR) images is an important yet challenging issue when considering the complicatedly and dramatically changing features of tidal fluctuation. The difficulty of intertidal area classification is compounded because a high proportion of this area is frequently flooded by water, making statistical modeling methods with spatial contextual information often ineffective. Because polarimetric entropy and anisotropy play significant roles in characterizing intertidal areas, in this paper we propose a novel unsupervised contextual classification algorithm. The key point of the method is to combine the generalized extreme value(GEV) statistical model of the polarization features and the Markov random field(MRF) for contextual smoothing. A goodness-of-fit test is added to determine the significance of the components of the statistical model. The final classification results are obtained by effectively combining the results of polarimetric entropy and anisotropy. Experimental results of the polarimetric data obtained by the Chinese Gaofen-3 SAR satellite demonstrate the feasibility and superiority of the proposed classification algorithm.
文摘This paper proposed to use double polarization synthetic aperture radar (SAR) image to classify surface feature, based on DEM. It takes fully use of the polarization information and external information. This pa-per utilizes ENVISAT ASAR APP double-polarization data of Poyang lake area in Jiangxi Province. Com-pared with traditional pixel-based classification, this paper fully uses object features (color, shape, hierarchy) and accessorial DEM information. The classification accuracy improves from the original 73.7% to 91.84%. The result shows that object-oriented classification technology is suitable for double polarization SAR’s high precision classification.
基金The National Key Research and Development Program of China(No.2018YFC0407900)The National Natural Science Foundation of China(No.41774003)+2 种基金The Natural Science Foundation of Jiangsu Province(No.BK20171432)The Fundamental Research Funds for the Central Universities(No.2018B177142019B60714)。
文摘An object-based approach is proposed for land cover classification using optimal polarimetric parameters.The ability to identify targets is effectively enhanced by the integration of SAR and optical images.The innovation of the presented method can be summarized in the following two main points:①estimating polarimetric parameters(H-A-Alpha decomposition)through the optical image as a driver;②a multi-resolution segmentation based on the optical image only is deployed to refine classification results.The proposed method is verified by using Sentinel-1/2 datasets over the Bakersfield area,California.The results are compared against those from pixel-based SVM classification using the ground truth from the National Land Cover Database(NLCD).A detailed accuracy assessment complied with seven classes shows that the proposed method outperforms the conventional approach by around 10%,with an overall accuracy of 92.6%over regions with rich texture.
文摘The different approaches used for target decomposition (TD) theory in radar polarimetry are reviewed and three main types of theorems are introduced: those based on Mueller matrix, those using an eigenvector analysis of the coherency matrix, and those employing coherent decomposition of the scattering matrix. Support vector machine (SVM), as a novel approach in pattern recognition, has demonstrated success in many fields. A new algorithm of target classification, by combining target decomposition and the support vector machine, is proposed. To conduct the experiment, the polarimetric synthetic aperture radar (SAR) data are used. Experimental results show that it is feasible and efficient to target classification by applying target decomposition to extract scattering mechanisms, and the effects of kernel function and its parameters on the classification efficiency are significant.
基金the National Nature Science Foundation of China (60372057).
文摘To study the scene classification in the Synthetic Aperture Radar (SAR) image, a novel method based on kernel estimate, with the Maxkov context and Dempster-Shafer evidence theory is proposed. Initially, a nonpaxametric Probability Density Function (PDF) estimate method is introduced, to describe the scene of SAR images. And then under the Maxkov context, both the determinate PDF and the kernel estimate method axe adopted respectively, to form a primary classification. Next, the primary classification results are fused using the evidence theory in an unsupervised way to get the scene classification. Finally, a regularization step is used, in which an iterated maximum selecting approach is introduced to control the fragments and modify the errors of the classification. Use of the kernel estimate and evidence theory can describe the complicated scenes with little prior knowledge and eliminate the ambiguities of the primary classification results. Experimental results on real SAR images illustrate a rather impressive performance.
基金supported by the National Natural Science Foundation of China(Nos.41371342 and 61331016)the National Key Research and Development Program of China(No.2016YFC0803003-01)
文摘We propose a novel statistical distribution texton(s-texton) feature for synthetic aperture radar(SAR) image classification. Motivated by the traditional texton feature, the framework of texture analysis, and the importance of statistical distribution in SAR images, the s-texton feature is developed based on the idea that parameter estimation of the statistical distribution can replace the filtering operation in the traditional texture analysis of SAR images. In the process of extracting the s-texton feature, several strategies are adopted, including pre-processing, spatial gridding, parameter estimation, texton clustering, and histogram statistics. Experimental results on Terra SAR data demonstrate the effectiveness of the proposed s-texton feature.
基金Supported by National Basic Research Development Program of China(973 Program)(2007CB311006) National Natural Science Foundation of China(60602026),Acknowledgement The authors would like to thank ESA (http://earth.esa. int/polsarpro/datasets.html) for providing the data.
基金supported in part by the 863 Program under Grant No. 2007AA12Z159the Program for New Century Excellent Talents in University of China under Grant No. NCET-06-0813
文摘Improving the target-clutter ratio (TCR) of moving targets in synthetic aperture radar (SAR), imagery is very important for target detection and identification. In this paper, using the Cloude's decomposition theory, an average eovarianee matrix can be decomposed into a summation of matrices representing three different scattering processes: the single bounce scattering, double bounce scattering, and diffuse scattering. A new idea of using the combination of the three components to enhance the contrast of an image is proposed. In order to compare with the polarimetric contrast enhancement method based on HH, HV, and W data, ship areas of two combinatorial intensity images are detected by image binarization. Experimental results show that the method proposed in this paper provides better contrast.
基金supported by the National Natural Science Foundation of China(41704118 11747032)+2 种基金the Natural Science Basic Research Plan in Shaanxi Province of China(2017JQ6065 2017JQ4017)the Special Scientific Research Project of Shaanxi Provincial Education Department(18JK0549)
文摘A new hybrid Freeman/eigenvalue decomposition based on the orientation angle compensation and the various extended volume models for polarimetric synthetic aperture radar(PolSAR) data are presented. There are three steps in the novel version of the three-component model-based decomposition.Firstly, two special unitary transform matrices are applied on the coherency matrix for deorientation to decrease the correlation between the co-polarized term and the cross-polarized term.Secondly, two new conditions are proposed to distinguish the manmade structures and the nature media after the orientation angle compensation. Finally, in order to adapt to the scattering properties of different media, five different volume scattering models are used to decompose the coherency matrix. These new conditions pre-resolves man-made structures, which is beneficial to the subsequent selection of a more suitable volume scattering model.Fully PolSAR data on San Francisco are used in the experiments to prove the efficiency of the proposed hybrid Freeman/eigenvalue decomposition.
基金supported by the National Natural Science Foundation of China(61101180)the China Postdoctoral Science Foundation (20110490088)
文摘For better interpretation of synthetic aperture radar(SAR) images,the speckle filtering is an important issue.In the area of speckle filtering,the proper averaging of samples with similar scattering characteristics is of great importance.However,existing filtering algorithms are either lack of a similarity judgment of scattering characteristics or using only intensity information for similarity judgment.A novel polarimetric SAR(PolSAR) speckle filtering algorithm based on the mean shift theory is proposed.As polarimetric covariance matrices or coherency matrices form Riemannian manifold,the pixels with similar scattering characteristics gather closely and those with different scattering characteristics separate in this hyperspace.By using the range-spatial joint mean shift theory in Riemannian manifold,the pixels chosen for averaging are ensured to be close not only in scattering characteristics but also in the spatial domain.German Aerospace Center(DLR) L-Band Experiment SAR(E-SAR) data and East China Research Institute of Electronic Engineering(ECRIEE) PolSAR data are used to demonstrate the efficiency of the proposed algorithm.The filtering results of two commonly used speckle filtering algorithms,refined Lee filtering algorithm and intensity driven adaptive neighborhood(IDAN) filtering algorithm,are also presented for the comparison purpose.Experiment results show that the proposed speckle filtering algorithm achieves a good performance in terms of speckle filtering,edge protection as well as polarimetric characteristics preservation.
基金partly supported by Project number DST-2016056, funded by the Department of Science and Technology, Government of India
文摘We propose a multi-sensor multi-spectral and bi-temporal dual-polarimetric Synthetic Aperture Radar(SAR) data integration scheme for dry/wet snow mapping using Sentinel-2 and Sentinel-1 data which are freely available to the research community. The integration is carried out by incorporating the information retrieved from ratio images of the conventional method for wet snow mapping and the multispectral data in two different frameworks. Firstly, a simple differencing scheme is employed for dry/wet snow mapping, where the snow cover area is derived using the Normalized Differenced Snow Index(NDSI). In the second framework, the ratio images are stacked with the multispectral bands and this stack is used for supervised and unsupervised classification using support vector machines for dry/wet snow mapping. We also investigate the potential of a state of the art backscatter model for the identification of dry/wet snow using Sentinel-1 data. The results are validated using a reference map derived from RADARSAT-2 full polarimetric SAR data. A good agreement was observed between the results and the reference data with an overall accuracy greater than 0.78 for the different blending techniques examined. For all the proposed frameworks, the wet snow was better identified. The coefficient of determination between the snow wetness derived from the backscatter model and the reference based on RADARSAT-2 data was observed to be 0.58 with a significantly higher root mean square error of 1.03 % by volume.
基金The National Natural Science Foundation of China under contract No.61001137the Project of Knowledge Innovative Program of the Chinese Academy of Sciences and other projects under contract Nos Y1530151A81530151G4 and Y15102EN00
文摘The relationships among an ocean wave spectrum,a fully polarimetric coherence matrix,and radar parameters are deduced with an electromagnetic wave theory.Furthermore,the relationship between the polarimetric entropy and ocean wave spectrum is established based on the definition of entropy and a twoscale scattering model of the ocean surface.It is the first time that the polarimetric entropy of the ocean surface is presented in theory.Meanwhile,the relationships among the fully polarimetric entropy and the parameters related to radar and ocean are discussed.The study is the basis of further monitoring targets on the ocean surface and deriving oceanic information with the entropy from the ocean surface.The contrast enhancement between human-made targets and the ocean surface with the entropy is presented with quad-pol airborne synthetic aperture radar(AIRSAR) data.
文摘A simple and fast approach based on eigenvalue similarity metric for Polarimetric SAR image segmentation of Land Cover is proposed in this paper. The approach uses eigenvalues of the coherency matrix as to construct similarity metric of clustering algorithm to segment SAR image. The Mahalanobis distance is used to metric pairwise similarity between pixels to avoid the manual scale parameter tuning in previous spectral clustering method. Furthermore, the spatial coherence constraints and spectral clustering ensemble are employed to stabilize and improve the segmentation performance. All experiments are carried out on three sets of Polarimetric SAR data. The experimental results show that the proposed method is superior to other comparison methods.
基金National Natural Science Foundation of China (No.60890074) National High Technology Research and Development Program of China(863 program) (No.2011AA 120404 ) Fundamental Research Funds for the Central Universities (No.201161902020003, 2012619020213, 2012619020206)