期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Ice Nucleation of Cirrus Clouds Related to the Transported Dust Layer Observed by Ground-Based Lidars over Wuhan,China
1
作者 Yun HE Fan YI +2 位作者 Fuchao LIU Zhenping YIN Jun ZHOU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第12期2071-2086,共16页
Cirrus clouds related to transported dust layers were identified on 22 occasions with ground-based polarization lidar from December 2012 to February 2018 over Wuhan(30.5°N,114.4°E),China.All the events occur... Cirrus clouds related to transported dust layers were identified on 22 occasions with ground-based polarization lidar from December 2012 to February 2018 over Wuhan(30.5°N,114.4°E),China.All the events occurred in spring and winter.Cirrus clouds were mostly located above 7.6 km on top of the aloft dust layers.In-cloud relative humidity with respect to ice(RH_(i))derived from water vapor Raman lidar as well as from ERA5 reanalysis data were used as criteria to determine the possible ice nucleation regimes.Corresponding to the two typical cases shown,the observed events can be classified into two categories:(1)category A(3 cases),in-cloud peak RH_(i)≥150%,indicating competition between heterogeneous nucleation and homogeneous nucleation;and(2)category B(19 cases),in-cloud peak RH_(i)<150%,revealing that only heterogeneous nucleation was involved.Heterogeneous nucleation generally took place during instances of cirrus cloud formation in the upper troposphere when advected dust particles were present.Although accompanying cloud-top temperatures ranged from–51.9℃to–30.4℃,dust-related heterogeneous nucleation contributed to primary ice nucleation in cirrus clouds by providing ice nucleating particle concentrations on the order of 10^(−3)L^(−1)to 10^(2)L^(−1).Heterogeneous nucleation and subsequent crystal growth reduced the ambient RH_(i)to be less than 150%by consuming water vapor and thus completely inhibited homogeneous nucleation. 展开更多
关键词 CIRRUS ice nucleation polarization lidar dust ice-nucleating particle
下载PDF
Synergistic Use of AIRS and MODIS for Dust Top Height Retrieval over Land 被引量:2
2
作者 YAO Zhigang Jun LI ZHAO Zengliang 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第4期470-476,共7页
It is nontrivial to extract the dust top height(DTH) accurately from passive instruments over land due to the complexity of the surface conditions. The Moderate Resolution Imaging Spectroradiometer(MODIS) deep blu... It is nontrivial to extract the dust top height(DTH) accurately from passive instruments over land due to the complexity of the surface conditions. The Moderate Resolution Imaging Spectroradiometer(MODIS) deep blue(DB) algorithm can be used to infer the aerosol optical depth(AOD) over high-reflective surfaces. The Atmospheric Infrared Sounder(AIRS) can simultaneously obtain the DTH and optical depth information. This study focuses on the synergistic use of AIRS observations and MODIS DB results for improving the DTH by using a stable relationship between the AIRS infrared and MODIS DB AODs. A one-dimensional variational(1DVAR) algorithm is applied to extract the DTH from AIRS. Simulation experiments indicate that when the uncertainty of the dust optical depth decreases from 50% to 20%, the improvement of the DTH retrieval accuracy from AIRS reaches 200 m for most of the assumed dust conditions. For two cases over the Taklimakan Desert, the results are compared against Cloud-Aerosol Lidar with Orthogonal Polarization(CALIOP) measurements. The results confirm that the MODIS DB product could help extract the DTH over land from AIRS. 展开更多
关键词 AIRS MODIS dust height Cloud-Aerosol lidar with Orthogonal polarization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部