The quaternion approach to solve the coupled nonlinear Schrodinger equations (CNSEs) in fibers is proposed, converting the CNSEs to a single variable equation by using a conception of eigen-quaternion of coupled qua...The quaternion approach to solve the coupled nonlinear Schrodinger equations (CNSEs) in fibers is proposed, converting the CNSEs to a single variable equation by using a conception of eigen-quaternion of coupled quater- nion. The crosstalk of quarter-phase-shift-key signals caused by fiber nonlinearity in polarization multiplexing systems with 100 Cbps bit-rate is investigated and simulated. The results demonstrate that the crosstalk is like a rotated ghosting of input constellation. For the 50 km conventional fiber link, when the total power is less than 4roW, the crosstalk effect can be neglected; when the power is larger than 20roW, the crosstalk is very obvious. In addition, the crosstalk can not be detected according to the output eye diagram and state of polarization in Poincare sphere in the trunk fiber, making it difficult for the monitoring of optical trunk link.展开更多
Active metasurfaces have recently attracted more attention since they can make the light manipulation be versatile and real-time. Metasurfaces-based holography possesses the advantages of high spatial resolution and e...Active metasurfaces have recently attracted more attention since they can make the light manipulation be versatile and real-time. Metasurfaces-based holography possesses the advantages of high spatial resolution and enormous information capacity for applications in optical displays and encryption. In this work, a tunable polarization multiplexing holographic metasurface controlled by an external magnetic field is proposed. The elaborately designed nanoantennas are arranged on the magneto-optical intermediate layer, which is placed on the metallic reflecting layer. Since the non-diagonal elements of the dielectric tensor of the magneto-optical material become non-zero values once the external magnetic field is applied,the differential absorption for the left and right circularly polarized light can be generated. Meanwhile, the amplitude and phase can be flexibly modulated by changing the sizes of the nanoantennas. Based on this, the dynamic multichannel holographic display of metasurface in the linear and circular polarization channels is realized via magnetic control, and it can provide enhanced security for optical information storage. This work paves the way for the realization of magnetically controllable phase modulation, which is promising in dynamic wavefront control and optical information encryption.展开更多
We propose and experimentally demonstrate a novel scheme to realize polarization-division-multiplexing quadrature-phase-shift-keying (PDM-QPSK) signal transmission over fiber, wireless and fiber at Wband (75-110 GH...We propose and experimentally demonstrate a novel scheme to realize polarization-division-multiplexing quadrature-phase-shift-keying (PDM-QPSK) signal transmission over fiber, wireless and fiber at Wband (75-110 GHz). The generation of polarization multiplexing millimeter-wave (mm-wave) wireless signal is based on the photonic technique. After 20-km fiber transmission, polarization diversity and heterodyne beating are implemented to convert the polarization components of the polarization-multiplexing signals from the optical baseband to W-band so that up to 16 Gb/s mm-wave signals can be delivered over 2-m 2~2 multiple-input multiple-output (MIMO) wireless link. At the receiver base station (BS), polarization combination reconstructs the PDM-QPSK signal which is then launched into another 20-km fiber. In the experiment, coherent detection is introduced to improve receiver sensitivity and constant modulus algorithm (CMA) is applied for polarization de-multiplexing. The bit-error-ratio (BER) for 16-Gb/s PDM- QPSK signal delivery is below the forward-error-correction (FEC) threshold of 3.8× 10-3 with the optical signal-to-noise ratio (OSNR) above 11.8 dB.展开更多
A high-speed and economical optical local access network system is proposed where bi-directional polarization multiplexing is applied to a bi-directional transmission. Experimental results using a prototype system con...A high-speed and economical optical local access network system is proposed where bi-directional polarization multiplexing is applied to a bi-directional transmission. Experimental results using a prototype system confirm low optical loss and environmental stabilities.展开更多
Herein,an attention-grabbing and up-to-date review related to major multiplexing techniques is presented which in-cludes wavelength division multiplexing(WDM),polarization division multiplexing(PDM),space division mul...Herein,an attention-grabbing and up-to-date review related to major multiplexing techniques is presented which in-cludes wavelength division multiplexing(WDM),polarization division multiplexing(PDM),space division multiplexing(SDM),mode division multiplexing(MDM)and orbital angular momentum multiplexing(OAMM).Multiplexing is a mech-anism by which multiple signals are combined into a shared channel used to showcase the maximum capacity of the op-tical links.However,it is critical to develop hybrid multiplexing methods to allow enhanced channel numbers.In this re-view,we have also included hybrid multiplexing techniques such as WDM-PDM,WDM-MDM and PDM-MDM.It is prob-able to attain N×M channels by utilizing N wavelengths and M guided-modes by simply utilizing hybrid WDM-MDM(de)multiplexers.To the best of our knowledge,this review paper is one of its kind which has highlighted the most prom-inent and recent signs of progress in multiplexing techniques in one place.展开更多
Polarizing beam splitter has rather significant applications in polarization diversity circuits and polarization multiplexing systems.In this paper,we present an asymmetric polarizing beam splitter utilizing hybrid pl...Polarizing beam splitter has rather significant applications in polarization diversity circuits and polarization multiplexing systems.In this paper,we present an asymmetric polarizing beam splitter utilizing hybrid plasmonic waveguide.The special hybrid structure with a hybrid waveguide and a dielectric waveguide can limit the energy of TE and TM modes to a different layer.Therefore,we can achieve beam splitting by adjusting the corresponding parameters of the two waveguides.First,we studied the influences of different structure parameters on the real part of the effective mode refractive index of the two waveguides,and obtained a set of parameters that satisfy the condition of strong coupling of TM mode and weak coupling of TE mode.Then,the performance of our proposed polarizing beam splitter is evaluated numerically.The length of the coupling section is only 4.1μm,and the propagation loss of TM and TE modes is 0.0025 d B/μm and 0.0031 d B/μm respectively.Additionally,the extinction ratios of TM and TE modes are 10.62 d B and 12.55 d B,respectively.Particularly,the proposed device has excellent wavelength insensitivity.Over the entire C-band,the fluctuation of the whole normalized output power is less than 0.03.In short,our proposed asymmetric polarizing beam splitter features ultra-compactness,low propagation loss,and broad bandwidth,which would provide promising applications in polarization multiplexing system and polarization diversity circuits relevant to optical interconnection.展开更多
Electromagnetic waves carrying orbital angular momentum(OAM),namely OAM beams,are important in various fields including optics,communications,and quantum information.However,most current schemes can only generate sing...Electromagnetic waves carrying orbital angular momentum(OAM),namely OAM beams,are important in various fields including optics,communications,and quantum information.However,most current schemes can only generate single or several simple OAM modes.Multi-mode OAM beams are rarely seen.This paper proposes a scheme to design metasurfaces that can generate multiple polarization-multiplexed OAM modes with equal intervals and intensities(i.e.,OAM combs)working in the terahertz(THz)range.As a proof of concept,we first design a metasurface to generate a pair of polarization-multiplexed OAM combs with arbitrary mode numbers.Furthermore,another metasurface is proposed to realize a pair of polarization-multiplexed OAM combs with arbitrary locations and intervals in the OAM spectrum.Experimental results agree well with full-wave simulations,verifying a great performance of OAM combs generation.Our method may provide a new solution to designing high-capacity THz devices used in multi-mode communication systems.展开更多
100 G Ethernet is considered to become the next generation Ethernet standard for IP networks.Typical 100 Gb/s transmission systems and their performance are presented.Comparision and analysis for 100 Gb/s transmission...100 G Ethernet is considered to become the next generation Ethernet standard for IP networks.Typical 100 Gb/s transmission systems and their performance are presented.Comparision and analysis for 100 Gb/s transmission systems have been discussed.It is demonstrated that optical OFDM can be used in future 100 Gb/s/ch and long-haul system.展开更多
We describe a new algorithm in a cost effective polarization division multiplexing (PDM) system. Without modifying the existing transmitter, receiver electronics, or softwares, we use a special optical scheme to dem...We describe a new algorithm in a cost effective polarization division multiplexing (PDM) system. Without modifying the existing transmitter, receiver electronics, or softwares, we use a special optical scheme to demultiplex the signal multiplexed and improve it with a conjugated gradient algorithm. We experimentally resume the polarization state with a deviation under 5% and the power loss less than 20 dB which proves the feasibility of the polarization control algorithm in the new polarization multiplexing system.展开更多
Polarization division multiplexing (PDM) can double the spectral efficiency of an optical transmission system. By means of simulation, the 2x40Gbit/s NRZ PDM system performance under polarization mode dispersion (PMD)...Polarization division multiplexing (PDM) can double the spectral efficiency of an optical transmission system. By means of simulation, the 2x40Gbit/s NRZ PDM system performance under polarization mode dispersion (PMD) and chromatic dispersion has been investigated. To realize the best performance, the bit slots of the two channels should be synchronized.展开更多
With the rapid development of laser technology,laser as the light source of night vision illuminating can realize long-distance and clear imaging,which has been widely used in laser active illuminating field.A high-po...With the rapid development of laser technology,laser as the light source of night vision illuminating can realize long-distance and clear imaging,which has been widely used in laser active illuminating field.A high-power diode laser with a wavelength of 808 nm was designed as the laser active illuminating source,and the output power of no less than100 W was obtained by spatial beam multiplexing,polarization multiplexing,and high efficiency fiber coupling techniques.In view of the beam homogenization of illuminating source,a novel beam homogenization system based on waveguide is proposed in this work.A square spot with a horizontal divergence angle of 40°,a vertical divergence angle of 10°,and an illuminating power ratio of 4:1 was obtained by a collimating lens.Comparing with the traditional circular illuminating beam,the square illuminating beam can match the illuminating angle of CCD camera better,and the energy utilization rate is higher.In addition,by optimizing the structure of waveguide and collimating lens,the illuminating angle can be changed to meet the illuminating requirements under different conditions theoretically.展开更多
Metasurfaces have demonstrated unprecedented capabilities in manipulating light with ultrathin and flat architectures.Although great progress has been made in the metasurface designs and function demonstrations,most m...Metasurfaces have demonstrated unprecedented capabilities in manipulating light with ultrathin and flat architectures.Although great progress has been made in the metasurface designs and function demonstrations,most metalenses still only work as a substitution of conventional lenses in optical settings,whose integration advantage is rarely manifested.We propose a highly integrated imaging device with silicon metalenses directly mounted on a complementary metal oxide semiconductor image sensor,whose working distance is in hundreds of micrometers.The imaging performances including resolution,signal-to-noise ratio,and field of view(FOV)are investigated.Moreover,we develop a metalens array with polarization-multiplexed dual-phase design for a wide-field microscopic imaging.This approach remarkably expands the FOV without reducing the resolution,which promises a non-limited space-bandwidth product imaging for wide-field microscopy.As a result,we demonstrate a centimeter-scale prototype for microscopic imaging,showing uniqueness of meta-design for compact integration.展开更多
We present the performance analysis of ll2Gb/s-4 wavelength division multiplexing (WDM) 100GHz channel spacing polarization division multiplexed-differential quadrature phase shift keying (PDM-DQPSK) optical label...We present the performance analysis of ll2Gb/s-4 wavelength division multiplexing (WDM) 100GHz channel spacing polarization division multiplexed-differential quadrature phase shift keying (PDM-DQPSK) optical label switching system with frequency swept coherent detected spectral amplitude code labels. Direct detection is chosen to demodulate the payload by applying a polarization tracker, while 4-bits of 156Mb/s spectral amplitude code label is coherently detected with a scheme of frequently-swept coherent detection. We optimize the payload laser linewidth as well as the frequency spacing between the payload and label. The label and payload signal performances are assessed by the eye-diagram opening factor (EOF) and bit-error rate (BER) at 10 9 as a function of the received optical power (ROP) and the optical signal to noise ratio (OSNR). The payload could well be demodulated after 900 km at a bit error rate of 10-3 using forward error correction (FEC).展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 61275075the Beijing Natural Science Foundation under Grant Nos 4132035 and 4144080
文摘The quaternion approach to solve the coupled nonlinear Schrodinger equations (CNSEs) in fibers is proposed, converting the CNSEs to a single variable equation by using a conception of eigen-quaternion of coupled quater- nion. The crosstalk of quarter-phase-shift-key signals caused by fiber nonlinearity in polarization multiplexing systems with 100 Cbps bit-rate is investigated and simulated. The results demonstrate that the crosstalk is like a rotated ghosting of input constellation. For the 50 km conventional fiber link, when the total power is less than 4roW, the crosstalk effect can be neglected; when the power is larger than 20roW, the crosstalk is very obvious. In addition, the crosstalk can not be detected according to the output eye diagram and state of polarization in Poincare sphere in the trunk fiber, making it difficult for the monitoring of optical trunk link.
基金supported by the National Key R&D Program of China (Nos. 2021YFB2801803 and 2021YFA1401200)the Natural Science Foundation of Shandong Province(No. ZR2023LZH001)+3 种基金the Beijing Outstanding Young Scientist Program (No. BJJWZYJH01201910007022)the National Natural Science Foundation of China (Nos. U21A20140 and 92050117)the Fok Ying-Tong Education Foundation of China(No. 161009)the Beijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park (No. Z211100004821009)。
文摘Active metasurfaces have recently attracted more attention since they can make the light manipulation be versatile and real-time. Metasurfaces-based holography possesses the advantages of high spatial resolution and enormous information capacity for applications in optical displays and encryption. In this work, a tunable polarization multiplexing holographic metasurface controlled by an external magnetic field is proposed. The elaborately designed nanoantennas are arranged on the magneto-optical intermediate layer, which is placed on the metallic reflecting layer. Since the non-diagonal elements of the dielectric tensor of the magneto-optical material become non-zero values once the external magnetic field is applied,the differential absorption for the left and right circularly polarized light can be generated. Meanwhile, the amplitude and phase can be flexibly modulated by changing the sizes of the nanoantennas. Based on this, the dynamic multichannel holographic display of metasurface in the linear and circular polarization channels is realized via magnetic control, and it can provide enhanced security for optical information storage. This work paves the way for the realization of magnetically controllable phase modulation, which is promising in dynamic wavefront control and optical information encryption.
基金supported by the National Natural Science Foundation of China(Nos.61177071and 61250018)the National"863"Program of China(Nos.2011AA010302 and 2012AA011302)+1 种基金the National Key Technology R&D Program of China(No.2012BAH18B00)the International Cooperation Program of Shanghai Science and Technology Association(No.12510705600)
文摘We propose and experimentally demonstrate a novel scheme to realize polarization-division-multiplexing quadrature-phase-shift-keying (PDM-QPSK) signal transmission over fiber, wireless and fiber at Wband (75-110 GHz). The generation of polarization multiplexing millimeter-wave (mm-wave) wireless signal is based on the photonic technique. After 20-km fiber transmission, polarization diversity and heterodyne beating are implemented to convert the polarization components of the polarization-multiplexing signals from the optical baseband to W-band so that up to 16 Gb/s mm-wave signals can be delivered over 2-m 2~2 multiple-input multiple-output (MIMO) wireless link. At the receiver base station (BS), polarization combination reconstructs the PDM-QPSK signal which is then launched into another 20-km fiber. In the experiment, coherent detection is introduced to improve receiver sensitivity and constant modulus algorithm (CMA) is applied for polarization de-multiplexing. The bit-error-ratio (BER) for 16-Gb/s PDM- QPSK signal delivery is below the forward-error-correction (FEC) threshold of 3.8× 10-3 with the optical signal-to-noise ratio (OSNR) above 11.8 dB.
基金This research is supported by a grant from FUTABA DENSHI foundation.
文摘A high-speed and economical optical local access network system is proposed where bi-directional polarization multiplexing is applied to a bi-directional transmission. Experimental results using a prototype system confirm low optical loss and environmental stabilities.
基金financially supported by the Russian Foundation for Basic Research(grant No.18-29-20045)for WDM,MDM and hybrid WDM-MDM,WDM-PDM sectionsthe Russian Science Foundation(grant No.21-79-20075)for PDM,OAMM and hybrid PDM-MDM sectionsthe Ministry of Science and Higher Education of the Russian Federation under the FSRC"Crystallography and Photonics"of the Russian Academy of Sciences(the state task No.007-GZ/Ch3363/26)for comparative analysis.
文摘Herein,an attention-grabbing and up-to-date review related to major multiplexing techniques is presented which in-cludes wavelength division multiplexing(WDM),polarization division multiplexing(PDM),space division multiplexing(SDM),mode division multiplexing(MDM)and orbital angular momentum multiplexing(OAMM).Multiplexing is a mech-anism by which multiple signals are combined into a shared channel used to showcase the maximum capacity of the op-tical links.However,it is critical to develop hybrid multiplexing methods to allow enhanced channel numbers.In this re-view,we have also included hybrid multiplexing techniques such as WDM-PDM,WDM-MDM and PDM-MDM.It is prob-able to attain N×M channels by utilizing N wavelengths and M guided-modes by simply utilizing hybrid WDM-MDM(de)multiplexers.To the best of our knowledge,this review paper is one of its kind which has highlighted the most prom-inent and recent signs of progress in multiplexing techniques in one place.
基金supported by the Shenzhen Science and Technology Program(JCYJ20210324093806017)the ShenzhenHong Kong Joint Innovation Foundation(SGDX20190919094401725)。
文摘Polarizing beam splitter has rather significant applications in polarization diversity circuits and polarization multiplexing systems.In this paper,we present an asymmetric polarizing beam splitter utilizing hybrid plasmonic waveguide.The special hybrid structure with a hybrid waveguide and a dielectric waveguide can limit the energy of TE and TM modes to a different layer.Therefore,we can achieve beam splitting by adjusting the corresponding parameters of the two waveguides.First,we studied the influences of different structure parameters on the real part of the effective mode refractive index of the two waveguides,and obtained a set of parameters that satisfy the condition of strong coupling of TM mode and weak coupling of TE mode.Then,the performance of our proposed polarizing beam splitter is evaluated numerically.The length of the coupling section is only 4.1μm,and the propagation loss of TM and TE modes is 0.0025 d B/μm and 0.0031 d B/μm respectively.Additionally,the extinction ratios of TM and TE modes are 10.62 d B and 12.55 d B,respectively.Particularly,the proposed device has excellent wavelength insensitivity.Over the entire C-band,the fluctuation of the whole normalized output power is less than 0.03.In short,our proposed asymmetric polarizing beam splitter features ultra-compactness,low propagation loss,and broad bandwidth,which would provide promising applications in polarization multiplexing system and polarization diversity circuits relevant to optical interconnection.
基金support from the National Key Research and Development Program of China(No.2019YFA0210203)the National Natural Science Foundation of China(No.62271011,No.61971013).
文摘Electromagnetic waves carrying orbital angular momentum(OAM),namely OAM beams,are important in various fields including optics,communications,and quantum information.However,most current schemes can only generate single or several simple OAM modes.Multi-mode OAM beams are rarely seen.This paper proposes a scheme to design metasurfaces that can generate multiple polarization-multiplexed OAM modes with equal intervals and intensities(i.e.,OAM combs)working in the terahertz(THz)range.As a proof of concept,we first design a metasurface to generate a pair of polarization-multiplexed OAM combs with arbitrary mode numbers.Furthermore,another metasurface is proposed to realize a pair of polarization-multiplexed OAM combs with arbitrary locations and intervals in the OAM spectrum.Experimental results agree well with full-wave simulations,verifying a great performance of OAM combs generation.Our method may provide a new solution to designing high-capacity THz devices used in multi-mode communication systems.
基金supported by NSFC(no60872035)Youthful foundation of UESTC JX0707Key Youthful foundation of UESTC JX0801
文摘100 G Ethernet is considered to become the next generation Ethernet standard for IP networks.Typical 100 Gb/s transmission systems and their performance are presented.Comparision and analysis for 100 Gb/s transmission systems have been discussed.It is demonstrated that optical OFDM can be used in future 100 Gb/s/ch and long-haul system.
基金supported by the Key Item of Application Basis Research Plan of Tianjin under Grant No.06YFJZJC00400.
文摘We describe a new algorithm in a cost effective polarization division multiplexing (PDM) system. Without modifying the existing transmitter, receiver electronics, or softwares, we use a special optical scheme to demultiplex the signal multiplexed and improve it with a conjugated gradient algorithm. We experimentally resume the polarization state with a deviation under 5% and the power loss less than 20 dB which proves the feasibility of the polarization control algorithm in the new polarization multiplexing system.
文摘Polarization division multiplexing (PDM) can double the spectral efficiency of an optical transmission system. By means of simulation, the 2x40Gbit/s NRZ PDM system performance under polarization mode dispersion (PMD) and chromatic dispersion has been investigated. To realize the best performance, the bit slots of the two channels should be synchronized.
基金supported by the National Natural Science Foundation of China(NSFC)(No.61991433)Pilot Project of CAS(No.XDB43030302)+3 种基金Equipment Pre-research(No.2006ZYGG0304)Key Research and Development Project of Guangdong Province(No.2020B090922003)R&D Program of Jilin Province(No.20190302042GX)Local Cooperation Projects of Chinese Academy of Sciences(No.2021SYHZ0012)。
文摘With the rapid development of laser technology,laser as the light source of night vision illuminating can realize long-distance and clear imaging,which has been widely used in laser active illuminating field.A high-power diode laser with a wavelength of 808 nm was designed as the laser active illuminating source,and the output power of no less than100 W was obtained by spatial beam multiplexing,polarization multiplexing,and high efficiency fiber coupling techniques.In view of the beam homogenization of illuminating source,a novel beam homogenization system based on waveguide is proposed in this work.A square spot with a horizontal divergence angle of 40°,a vertical divergence angle of 10°,and an illuminating power ratio of 4:1 was obtained by a collimating lens.Comparing with the traditional circular illuminating beam,the square illuminating beam can match the illuminating angle of CCD camera better,and the energy utilization rate is higher.In addition,by optimizing the structure of waveguide and collimating lens,the illuminating angle can be changed to meet the illuminating requirements under different conditions theoretically.
基金The authors acknowledge the financial support from the National Key R&D Program of China(Nos.2016YFA0202103 and 2017YFA0303701)the National Natural Science Foundation of China(Nos.91850204 and 11674167)Tao Li thanks the Dengfeng Project B of Nanjing University for the support.The authors declare that they have no conflicts of interest.
文摘Metasurfaces have demonstrated unprecedented capabilities in manipulating light with ultrathin and flat architectures.Although great progress has been made in the metasurface designs and function demonstrations,most metalenses still only work as a substitution of conventional lenses in optical settings,whose integration advantage is rarely manifested.We propose a highly integrated imaging device with silicon metalenses directly mounted on a complementary metal oxide semiconductor image sensor,whose working distance is in hundreds of micrometers.The imaging performances including resolution,signal-to-noise ratio,and field of view(FOV)are investigated.Moreover,we develop a metalens array with polarization-multiplexed dual-phase design for a wide-field microscopic imaging.This approach remarkably expands the FOV without reducing the resolution,which promises a non-limited space-bandwidth product imaging for wide-field microscopy.As a result,we demonstrate a centimeter-scale prototype for microscopic imaging,showing uniqueness of meta-design for compact integration.
文摘We present the performance analysis of ll2Gb/s-4 wavelength division multiplexing (WDM) 100GHz channel spacing polarization division multiplexed-differential quadrature phase shift keying (PDM-DQPSK) optical label switching system with frequency swept coherent detected spectral amplitude code labels. Direct detection is chosen to demodulate the payload by applying a polarization tracker, while 4-bits of 156Mb/s spectral amplitude code label is coherently detected with a scheme of frequently-swept coherent detection. We optimize the payload laser linewidth as well as the frequency spacing between the payload and label. The label and payload signal performances are assessed by the eye-diagram opening factor (EOF) and bit-error rate (BER) at 10 9 as a function of the received optical power (ROP) and the optical signal to noise ratio (OSNR). The payload could well be demodulated after 900 km at a bit error rate of 10-3 using forward error correction (FEC).