In this paper, we propose a numerical method based on semi-Lagrangian approach for solving quasi-geostrophic (QG) equations on a sphere. Using potential vorticity and stream-function as prognostic variables, two-...In this paper, we propose a numerical method based on semi-Lagrangian approach for solving quasi-geostrophic (QG) equations on a sphere. Using potential vorticity and stream-function as prognostic variables, two-order centered difference is suggested on the latitude-longitude grid. In our proposed numerical scheme, advection terms are expressed in a Lagrangian frame of reference to circumvent the CFL restriction. The pole singularity associated with the latitude-longitude grid is eliminated by a smoothing technique for the initial flow. Error analysis is provided for the numerical scheme.展开更多
文摘In this paper, we propose a numerical method based on semi-Lagrangian approach for solving quasi-geostrophic (QG) equations on a sphere. Using potential vorticity and stream-function as prognostic variables, two-order centered difference is suggested on the latitude-longitude grid. In our proposed numerical scheme, advection terms are expressed in a Lagrangian frame of reference to circumvent the CFL restriction. The pole singularity associated with the latitude-longitude grid is eliminated by a smoothing technique for the initial flow. Error analysis is provided for the numerical scheme.