期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Modeling and Global Conflict Analysis of Firewall Policy 被引量:2
1
作者 LIANG Xiaoyan XIA Chunhe +2 位作者 JIAO Jian HU Junshun LI Xiaojian 《China Communications》 SCIE CSCD 2014年第5期124-135,共12页
The global view of firewall policy conflict is important for administrators to optimize the policy.It has been lack of appropriate firewall policy global conflict analysis,existing methods focus on local conflict dete... The global view of firewall policy conflict is important for administrators to optimize the policy.It has been lack of appropriate firewall policy global conflict analysis,existing methods focus on local conflict detection.We research the global conflict detection algorithm in this paper.We presented a semantic model that captures more complete classifications of the policy using knowledge concept in rough set.Based on this model,we presented the global conflict formal model,and represent it with OBDD(Ordered Binary Decision Diagram).Then we developed GFPCDA(Global Firewall Policy Conflict Detection Algorithm) algorithm to detect global conflict.In experiment,we evaluated the usability of our semantic model by eliminating the false positives and false negatives caused by incomplete policy semantic model,of a classical algorithm.We compared this algorithm with GFPCDA algorithm.The results show that GFPCDA detects conflicts more precisely and independently,and has better performance. 展开更多
关键词 firewall policy semantic model conflict analysis conflict detection
下载PDF
Adaptable and Dynamic Access Control Decision-Enforcement Approach Based on Multilayer Hybrid Deep Learning Techniques in BYOD Environment
2
作者 Aljuaid Turkea Ayedh M Ainuddin Wahid Abdul Wahab Mohd Yamani Idna Idris 《Computers, Materials & Continua》 SCIE EI 2024年第9期4663-4686,共24页
Organizations are adopting the Bring Your Own Device(BYOD)concept to enhance productivity and reduce expenses.However,this trend introduces security challenges,such as unauthorized access.Traditional access control sy... Organizations are adopting the Bring Your Own Device(BYOD)concept to enhance productivity and reduce expenses.However,this trend introduces security challenges,such as unauthorized access.Traditional access control systems,such as Attribute-Based Access Control(ABAC)and Role-Based Access Control(RBAC),are limited in their ability to enforce access decisions due to the variability and dynamism of attributes related to users and resources.This paper proposes a method for enforcing access decisions that is adaptable and dynamic,based on multilayer hybrid deep learning techniques,particularly the Tabular Deep Neural Network Tabular DNN method.This technique transforms all input attributes in an access request into a binary classification(allow or deny)using multiple layers,ensuring accurate and efficient access decision-making.The proposed solution was evaluated using the Kaggle Amazon access control policy dataset and demonstrated its effectiveness by achieving a 94%accuracy rate.Additionally,the proposed solution enhances the implementation of access decisions based on a variety of resource and user attributes while ensuring privacy through indirect communication with the Policy Administration Point(PAP).This solution significantly improves the flexibility of access control systems,making themmore dynamic and adaptable to the evolving needs ofmodern organizations.Furthermore,it offers a scalable approach to manage the complexities associated with the BYOD environment,providing a robust framework for secure and efficient access management. 展开更多
关键词 BYOD security access control access control decision-enforcement deep learning neural network techniques TabularDNN MULTILAYER dynamic adaptable FLEXIBILITY bottlenecks performance policy conflict
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部