In this study,an inventory analysis approach was used to investigate the intensity of agricultural non-point source pollution(ANSP)and its spatial convergence at national and provincial levels in China from 1999 to 20...In this study,an inventory analysis approach was used to investigate the intensity of agricultural non-point source pollution(ANSP)and its spatial convergence at national and provincial levels in China from 1999 to 2017.On this basis,spatial factors affecting ANSP were explored by constructing a spatial econometric model.The results indicate that:1)The intensity of China's ANSP emission showed an overall upward trend and an obvious spatial difference,with the values being high in the eastern and central regions and relatively low in the western region.2)Significant spatial agglomeration was shown in China's ANSP intensity,and the agglomeration effect was increasing gradually.3)In the convergence analysis,a spatial lag model was found applicable for interpretation of the ANSP intensity,with the convergence rate being accelerated after considering the spatial factors but slower than that of regional economic growth.4)The spatial factors affecting the ANSP intensity are shown to be reduced by improving agricultural infrastructure investment,labor-force quality,and crop production ratio,while the expansion of agricultural economy scale and precipitation and runoff have positive impact on ANSP in the study region.However,agricultural research and development(R&D)investment showed no direct significant effect on the ANSP intensity.Meanwhile,improving the quality of the labor force would significantly reduce the ANSP intensity in the surrounding areas,while the precipitation and runoff would significantly increase the pollution of neighboring regions.This research has laid a theoretical basis for formulation and optimization of ANSP prevention strategies in China and related regions.展开更多
The responses of wheat Triticum aestivum, rice Oryza sativa, earthworms Eisenia foetida, and prawns Penaeus japonicus to combined acetochlor-Cu, Cd-Zn were studied in hy-droponic and soil-culturing systems using the m...The responses of wheat Triticum aestivum, rice Oryza sativa, earthworms Eisenia foetida, and prawns Penaeus japonicus to combined acetochlor-Cu, Cd-Zn were studied in hy-droponic and soil-culturing systems using the methods of ecotoxicology. In particular, system-atically quantitative analyses were documented by field experiments. Results showed that ecotoxicological effects under the combined pollution were not only related to chemical proper-ties of pollutants but also dependent on the concentration level of pollutants, in particular on the combination of concentrations of pollutants in ecosystems. Additionally, species of organisms, especially the type of ecosystem, determined the influences. To some extent, biological tissue targets attacked by pollutants were an important factor.展开更多
This study aimed to investigate the effects of ammonia addition on ethylene counter-flow diffusion flames with different diluents on the fuel or oxidizer side,using kinetic analyses.A special emphasis was put on asses...This study aimed to investigate the effects of ammonia addition on ethylene counter-flow diffusion flames with different diluents on the fuel or oxidizer side,using kinetic analyses.A special emphasis was put on assessing the coupled chemical effects of NH_(3) and CO_(2) on C2H4 combustion chemistry.The chemical effects could be evaluated by comparing fictitious inert NH_(3) or CO_(2) with normal active NH_(3) or CO_(2).The results revealed that the addition of NH_(3) decreased the mole fractions and production rates of key soot precursors,such as acetylene,propynyl,and benzene.When CO_(2) was used as the dilution gas,the coupled chemical effects of NH_(3) and CO_(2) were affected by the chemical effects of CO_(2) to varying degrees.With the oxidizer-side CO_(2) addition,the coupled chemical effects of NH_(3) and CO_(2) reduced the mole fractions of H,O,OH radicals,acetylene,propynyl,and benzene,while the effects differed from the fuel-side CO_(2) addition.The coupled chemical effects of NH_(3) and CO_(2) also promoted the formation of aldehyde contaminants,such as acetaldehyde,to some extent,particularly with CO_(2) addition on the oxidizer side.展开更多
Linking meteorology and air pollutants is a key challenge.The study investigated meteorological effects on PM_(2.5)concentration using the advanced convergent cross mapping method,utilizing hourly PM_(2.5)concentratio...Linking meteorology and air pollutants is a key challenge.The study investigated meteorological effects on PM_(2.5)concentration using the advanced convergent cross mapping method,utilizing hourly PM_(2.5)concentration and six meteorological factors across eight provinces and cities in Vietnam.Results demonstrated that temperature(ρ=0.30)and radiation(ρ=0.30)produced the highest effects,followed by humidity(ρ=0.28)and wind speed(ρ=0.24),while pressure(ρ=0.22)and wind direction(ρ=0.17)produced the weakest effects on PM_(2.5)concentration.Comparing theρvalues showed that temperature,wind speed,and wind direction had greater impacts on PM_(2.5)concentration during the dry season whereas radiation had a more influence during the wet season;Southern stations experienced larger meteorological effects.Temperature,humidity,pressure,and wind direction had both positive and negative influences on PM_(2.5)concentration,while radiation and wind speed mostly had negative influences.During PM_(2.5)pollution episodes,there wasmore contribution ofmeteorological effects on PM_(2.5)concentration indicated byρvalues.At contaminated levels,humidity(ρ=0.45)was the most dominant factor affecting PM_(2.5)concentration,followed by temperature(ρ=0.41)and radiation(ρ=0.40).Pollution episodes were pointed out to be more prevalent under higher humidity,higher pressure,lower temperature,lower radiation,and lower wind speed.Theρcalculation also revealed that lower temperature,lower radiation,and higher humidity greatly accelerated each other under pollution episodes,further enhancing PM_(2.5)concentration.The findings contributed to the literature on meteorology and air pollution interaction.展开更多
The continuous progress of industrialization is a fundamental cause of China’s increasingly severe environmental pollution problem.Improving the efficiency of industrial pollution control is an inevitable choice to e...The continuous progress of industrialization is a fundamental cause of China’s increasingly severe environmental pollution problem.Improving the efficiency of industrial pollution control is an inevitable choice to effectively decrease pollution emissions,thus winning the battle of pollution prevention and control.In this paper,we used the stochastic frontier analysis(SFA)model to measure the provincial efficiency of industrial pollution control based on the input and output data of industrial pollution control of 29 administrative provinces in China from 2000 to 2017.On this basis,a spatial econometric model was used to explore the influence of environmental regulation intensity on the efficiency of industrial pollution control.In addition,the spatial spillover effect of pollution reduction was thoroughly examined.The results show that:(1)The efficiency of industrial pollution control in China has improved year by year,but the overall efficiency is still low,with the average value increasing from 0.165 in 2000 to 0.309 in 2017.Furthermore,there is significant regional heterogeneity with the highest efficiency level in the east and lowest efficiency level in the west.(2)By increasing the financial and material input,the efficiency of industrial pollution control has increased.However,the increase of human input has not been so helpful.(3)The global Moran’s I index is significantly greater than zero,indicating a strong spatial correlation and agglomeration in the efficiency of industrial pollution control,which is reflected in high-high agglomeration in the eastern region and low-low agglomeration in the western region.(4)Stringent environmental regulation has a positive effect on improving the efficiency of industrial pollution control.It also imposes a positive spatial spillover effect,indicating a strategic interaction and coordination of regional pollution control.In line with this,related proposals have been made to optimize the investment structure for environmental pollution control,establish a flow mechanism for the factor market,and strengthen the environmental responsibility awareness of state-owned enterprises.On this basis,we expect to provide a policy for improving the efficiency of industrial pollution control and promoting regional joint pollution control in China.展开更多
基金Under the auspices of Key Program of the National Social Science Fund of China(No.16ASH007)。
文摘In this study,an inventory analysis approach was used to investigate the intensity of agricultural non-point source pollution(ANSP)and its spatial convergence at national and provincial levels in China from 1999 to 2017.On this basis,spatial factors affecting ANSP were explored by constructing a spatial econometric model.The results indicate that:1)The intensity of China's ANSP emission showed an overall upward trend and an obvious spatial difference,with the values being high in the eastern and central regions and relatively low in the western region.2)Significant spatial agglomeration was shown in China's ANSP intensity,and the agglomeration effect was increasing gradually.3)In the convergence analysis,a spatial lag model was found applicable for interpretation of the ANSP intensity,with the convergence rate being accelerated after considering the spatial factors but slower than that of regional economic growth.4)The spatial factors affecting the ANSP intensity are shown to be reduced by improving agricultural infrastructure investment,labor-force quality,and crop production ratio,while the expansion of agricultural economy scale and precipitation and runoff have positive impact on ANSP in the study region.However,agricultural research and development(R&D)investment showed no direct significant effect on the ANSP intensity.Meanwhile,improving the quality of the labor force would significantly reduce the ANSP intensity in the surrounding areas,while the precipitation and runoff would significantly increase the pollution of neighboring regions.This research has laid a theoretical basis for formulation and optimization of ANSP prevention strategies in China and related regions.
文摘The responses of wheat Triticum aestivum, rice Oryza sativa, earthworms Eisenia foetida, and prawns Penaeus japonicus to combined acetochlor-Cu, Cd-Zn were studied in hy-droponic and soil-culturing systems using the methods of ecotoxicology. In particular, system-atically quantitative analyses were documented by field experiments. Results showed that ecotoxicological effects under the combined pollution were not only related to chemical proper-ties of pollutants but also dependent on the concentration level of pollutants, in particular on the combination of concentrations of pollutants in ecosystems. Additionally, species of organisms, especially the type of ecosystem, determined the influences. To some extent, biological tissue targets attacked by pollutants were an important factor.
基金National Natural Science Foundation of China(52076110,52106160)Jiangsu Provincial Natural Science Foundation of China(BK20200490,BK20220955)Fundamental Research Funds for the Central Universities(30923010208 and 30920031103).
文摘This study aimed to investigate the effects of ammonia addition on ethylene counter-flow diffusion flames with different diluents on the fuel or oxidizer side,using kinetic analyses.A special emphasis was put on assessing the coupled chemical effects of NH_(3) and CO_(2) on C2H4 combustion chemistry.The chemical effects could be evaluated by comparing fictitious inert NH_(3) or CO_(2) with normal active NH_(3) or CO_(2).The results revealed that the addition of NH_(3) decreased the mole fractions and production rates of key soot precursors,such as acetylene,propynyl,and benzene.When CO_(2) was used as the dilution gas,the coupled chemical effects of NH_(3) and CO_(2) were affected by the chemical effects of CO_(2) to varying degrees.With the oxidizer-side CO_(2) addition,the coupled chemical effects of NH_(3) and CO_(2) reduced the mole fractions of H,O,OH radicals,acetylene,propynyl,and benzene,while the effects differed from the fuel-side CO_(2) addition.The coupled chemical effects of NH_(3) and CO_(2) also promoted the formation of aldehyde contaminants,such as acetaldehyde,to some extent,particularly with CO_(2) addition on the oxidizer side.
文摘Linking meteorology and air pollutants is a key challenge.The study investigated meteorological effects on PM_(2.5)concentration using the advanced convergent cross mapping method,utilizing hourly PM_(2.5)concentration and six meteorological factors across eight provinces and cities in Vietnam.Results demonstrated that temperature(ρ=0.30)and radiation(ρ=0.30)produced the highest effects,followed by humidity(ρ=0.28)and wind speed(ρ=0.24),while pressure(ρ=0.22)and wind direction(ρ=0.17)produced the weakest effects on PM_(2.5)concentration.Comparing theρvalues showed that temperature,wind speed,and wind direction had greater impacts on PM_(2.5)concentration during the dry season whereas radiation had a more influence during the wet season;Southern stations experienced larger meteorological effects.Temperature,humidity,pressure,and wind direction had both positive and negative influences on PM_(2.5)concentration,while radiation and wind speed mostly had negative influences.During PM_(2.5)pollution episodes,there wasmore contribution ofmeteorological effects on PM_(2.5)concentration indicated byρvalues.At contaminated levels,humidity(ρ=0.45)was the most dominant factor affecting PM_(2.5)concentration,followed by temperature(ρ=0.41)and radiation(ρ=0.40).Pollution episodes were pointed out to be more prevalent under higher humidity,higher pressure,lower temperature,lower radiation,and lower wind speed.Theρcalculation also revealed that lower temperature,lower radiation,and higher humidity greatly accelerated each other under pollution episodes,further enhancing PM_(2.5)concentration.The findings contributed to the literature on meteorology and air pollution interaction.
基金National Natural Science Foundation of China:The enhancing potential and realizing paths of China’s industrial total factor productivity:A perspective of energy price distortion correction[Grants number.71774122]China Postdoctoral Science Foundation:Research on the Emission Reduction Effect Evaluation and Mechanism of China’s Low-Carbon City Pilot Policies[Grants number.2019M662721].
文摘The continuous progress of industrialization is a fundamental cause of China’s increasingly severe environmental pollution problem.Improving the efficiency of industrial pollution control is an inevitable choice to effectively decrease pollution emissions,thus winning the battle of pollution prevention and control.In this paper,we used the stochastic frontier analysis(SFA)model to measure the provincial efficiency of industrial pollution control based on the input and output data of industrial pollution control of 29 administrative provinces in China from 2000 to 2017.On this basis,a spatial econometric model was used to explore the influence of environmental regulation intensity on the efficiency of industrial pollution control.In addition,the spatial spillover effect of pollution reduction was thoroughly examined.The results show that:(1)The efficiency of industrial pollution control in China has improved year by year,but the overall efficiency is still low,with the average value increasing from 0.165 in 2000 to 0.309 in 2017.Furthermore,there is significant regional heterogeneity with the highest efficiency level in the east and lowest efficiency level in the west.(2)By increasing the financial and material input,the efficiency of industrial pollution control has increased.However,the increase of human input has not been so helpful.(3)The global Moran’s I index is significantly greater than zero,indicating a strong spatial correlation and agglomeration in the efficiency of industrial pollution control,which is reflected in high-high agglomeration in the eastern region and low-low agglomeration in the western region.(4)Stringent environmental regulation has a positive effect on improving the efficiency of industrial pollution control.It also imposes a positive spatial spillover effect,indicating a strategic interaction and coordination of regional pollution control.In line with this,related proposals have been made to optimize the investment structure for environmental pollution control,establish a flow mechanism for the factor market,and strengthen the environmental responsibility awareness of state-owned enterprises.On this basis,we expect to provide a policy for improving the efficiency of industrial pollution control and promoting regional joint pollution control in China.