A novel poly(d, /-lactic acid) (PDLLA) based biomimetic polymer was synthesized by grafting maleic anhydride, butanediamine and arg-gly-asp-ser (RGDS) peptides onto the backbone of PDLLA, aiming to overcome the ...A novel poly(d, /-lactic acid) (PDLLA) based biomimetic polymer was synthesized by grafting maleic anhydride, butanediamine and arg-gly-asp-ser (RGDS) peptides onto the backbone of PDLLA, aiming to overcome the acidity and auto-accelerating degradation of PDLLA during degradation and to improve its biospecificity and biocompatibility. The synthetic copolymer was characterized by FTIR, ^13C NMR and amino acid analyzer (AAA).展开更多
The effect of a novel active nucleating agent(TBC8-eb) on the isothermal crystallization of poly(L-lactic acid) (PLLA) was studied by differential scanning calorimetry(DSC) and Fourier transform infrared spectroscopy(...The effect of a novel active nucleating agent(TBC8-eb) on the isothermal crystallization of poly(L-lactic acid) (PLLA) was studied by differential scanning calorimetry(DSC) and Fourier transform infrared spectroscopy(FTIR) . The analysis on kinetics demonstrates that TBC8-eb can not only accelerate the crystallization rate but also transform most of the original spherulite crystals of PLLA into sheaf-like crystals. Furthermore,the free energy of folding(σe) of PLLA and PLLA with TBC8-eb is 0.15 and 0.06 J·m-2,respectively,which suggests that the addition of TBC8-eb favors the regular folding of molecule chains in the crystallization of PLLA,improv-ing its crystallization rate. The FTIR results show that TBC8-eb can accelerate the conformational ordering of PLLA in the isothermal crystallization. The conformational ordering of PLLA nucleated with TBC8-eb begins with the interchain interaction of CH3,and then a short helix emerges where a couple of CH3 groups interact.展开更多
Biodegradable chitosan-g-poly (D, L-lactic acid) copolymers were prepared via two methods. (1) The lactide was grafted onto hydroxyl groups of chitosan by using macromolecular initiator sodium of trimethylsilyl-chit...Biodegradable chitosan-g-poly (D, L-lactic acid) copolymers were prepared via two methods. (1) The lactide was grafted onto hydroxyl groups of chitosan by using macromolecular initiator sodium of trimethylsilyl-chitosan, (2) poly (D,L-lactic acid)(PLA) with low molecular weight can be linked to the amino group by coupling activated PLA to trimethylsilyl-chitosan. Two graft copolymers had hydrophilic-hydrophobic character and can be applied as carriers for drug delivery.展开更多
Poly(L-lactic acid)(PLLA)is a thermoplastic material with complete degradability,high biocompatibility and excellent mechanical properties.It can replace petroleum-based polymers are currently being used in the fields...Poly(L-lactic acid)(PLLA)is a thermoplastic material with complete degradability,high biocompatibility and excellent mechanical properties.It can replace petroleum-based polymers are currently being used in the fields of packaging,agriculture,textiles,medical and so on.However,PLLA’s extremely flammability greatly limits its wider application.An bio-based flame retardant L-APP/PLLA composites was prepared by melt blending of the L-APP and PLLA.The morphology,impact properties,thermal properties and flame retardant properties of composites were investigated by field emission scanning electron microscope(SEM),impact tester,differential scanning calorimeter(DSC),thermogravimetric analyzer(TGA),limiting oxygen indexer(LOI)and horizontalvertical burning tester.The results showed that the degree of crystallization(X_(c))and LOI of L-APP/PLLA composites increased as increasing of L-APP content.What’s more,the impact strength first increased and then decreased,the glass transition temperature(T_(g))and melting temperature(T_(m))do not changed significantly.The impact strength of composites was 9.1 kJ/m^(2) at a 5 wt%loading for L-APP,which was the highest level.When the content of L-APP was 20%,the LOI was 30.8%,the Xc was 42.3%and the UL-94 level was V-0.This research can promote the value-added utilization of lignin and the application of PLLA in the fields of flame retardant materials.展开更多
In this paper, the surface structure of poly(L-lactic acid) (PLLA) film modified with gelatin was investigated. ThePLLA film specimens were treated directly with aqueous alkali solution to provide their surfaces with ...In this paper, the surface structure of poly(L-lactic acid) (PLLA) film modified with gelatin was investigated. ThePLLA film specimens were treated directly with aqueous alkali solution to provide their surfaces with carboxyl groups, sothat these functional groups could become the reactive sites for gelatin immobilization. The functional groups of the PLLAfilms were identified by ATR-FTIR spectra and XPS spectra, the changes in surface morphology were observed by usingenvironmental scanning electron microscopy (ESEM), and the hydrophilicity of modified PLLA films was examined bywater contact angle measurement. Experimental results showed that the gelatin was immobilized with water-solublecarbodiimide (EDC) onto the PLLA film's surfaces, and the gelatin content on the polymer surface was related to carboxylicgroup formed in the controlled hydrolysis process. Rough surfaces caused by hydrolysis will predominantly favor the adhesion and growth of cell; and the hydrophilicity of these surfaces after the modification procedure is enhanced.展开更多
Spherulitic morphology of pure poly lactic acid (PLLA) PLLA have investigated after thermal annealing. The morphology of spherulite of pure poly lactic acid (PLLA) PLLA have investigated after thermal annealing. The e...Spherulitic morphology of pure poly lactic acid (PLLA) PLLA have investigated after thermal annealing. The morphology of spherulite of pure poly lactic acid (PLLA) PLLA have investigated after thermal annealing. The effect of both annealing temperature and crystallization temperature on the formation of cracks was described by polarized optical microscope (POM). Non banded spherulite (fibrils) with cracks was detected in PLLA film after annealing at 160°C (180 min.) and isothermal crystallization temperatures at 140°C and 150°C. With increasing temperature after annealing treatment the size of spherulite is increased and more cracks are formed. The maximum growth rate of spherulites was found at 130°C. The physical ageing was carried out by annealing the PLLA sample at room temperature for several annealing time (ta) from 0 h to 720 h. The enthalpy relaxation has been studied by differential scanning calorimetry (DSC) through analysis of the endothermic peak of glass transition temperature, which increased and shifted towards higher temperature as the annealing time increased.展开更多
Paclitaxel(PTX) is an effective anticancer drug with poor solubility in water.Recently,much effort has been devoted into alternative formulations of PTX for improving its aqueous solubility.In this study,PTX and poly(...Paclitaxel(PTX) is an effective anticancer drug with poor solubility in water.Recently,much effort has been devoted into alternative formulations of PTX for improving its aqueous solubility.In this study,PTX and poly(L-lactic acid)(PLLA) were co-precipitated by a supercritical antisolvent(SAS) process using dichloromethane(DCM) and the mixtures of DCM/ethanol(EtOH) or DCM/dimethyl sulfoxide(DMSO) as the solvent,with super-critical carbon dioxide as the antisolvent.The effects of solvent,solvent ratio,temperature,pressure,polymer con-centration and solution flow rate on particle morphology,mass median diameter(Dp50) and PTX loading were in-vestigated using single-factor method.The particle samples were characterized using X-ray diffraction(XRD),scanning electron microscopy(SEM),laser diffraction particle size analyzer and high pressure liquid chromatogra-phy(HPLC).XRD results indicate that the micronized PTX is dispersed into the PLLA matrix in an amorphous form.SEM indicates that the solvent and the solvent ratio have great effect on the particle morphologies,and particle morphology is good at the volume ratio of DCM/EtOH of 50/50.For the mixed DCM/EtOH solvent,Dp50 increases with the increase of the temperature,pressure,PLLA concentration and solution flow rate,and PTX loading in-creases with pressure.Suitable operating conditions for the experimental system are as follows:DCM/EtOH 50/50(by volume),35 ℃,10-12 MPa,PLLA concentration of 5 g·L-1 and solution flow rate of 0.5 ml·min-1.展开更多
The biocomposite films were prepared from poly(L-lactic acid)and cellulose nanocrystals.To improve interfacial compatibility of hydrophilic cellulose nanocrystals with hydrophobic matrix polymer as well as to provide ...The biocomposite films were prepared from poly(L-lactic acid)and cellulose nanocrystals.To improve interfacial compatibility of hydrophilic cellulose nanocrystals with hydrophobic matrix polymer as well as to provide the osteoconductive properties,cellulose was functionalized with poly(glutamic acid).The modified cellulose nanocrystals were better distributed and less aggregated within the matrix,which was testified by scanning electron,optical and polarized light microscopy.According to mechanical tests,composites filled with nanocrystals modified with PGlu demonstrated higher values of Young’s modulus,elongation at break and tensile strength.Incubation of composite materials in model buffer solutions for 30 weeks followed with staining of Ca^(2+)deposits with Alizarin Red S assay testified better mineralization of materials containing PGlu-modified cellulose nanocrystals as filler.As the result of in vivo experiment,the developed composite materials showed less level of inflammation in comparison with pure polymer matrix and composites filled with non-functionalized cellulose nanocrystals.展开更多
In this study, poly(L-lactic acid)/ammonium persulfate doped-polypyrrole composite fibrous scaffolds with moderate conductivity were produced by combining electrospinning with in situ polymerization. PC12 cells were...In this study, poly(L-lactic acid)/ammonium persulfate doped-polypyrrole composite fibrous scaffolds with moderate conductivity were produced by combining electrospinning with in situ polymerization. PC12 cells were cultured on these fibrous scaffolds and their growth following electrical stimulation (0-20.0 μA stimulus intensity, for 1-4 days) was observed using inverted light microscopy, and scanning electron microscopy coupled with the MTT cell viability test. The results demonstrated that the poly(L-lactic acid)/ammonium persulfate doped-polypyrrole fibrous scaffold was a dual multi-porous micro/nano fibrous scaffold. An electrical stimulation with a current intensity 5.0- 10.0 μAfor about 2 days enhanced neuronal growth and neurite outgrowth, while a high current intensity (over 15.0 μA) suppressed them. These results indicate that electrical stimulation with a moderate current intensity for an optimum time frame can promote neuronal growth and neurite outgrowth in an intensity- and time-dependent manner.展开更多
种子细胞、支架材料及二者的相互作用是骨组织工程需要解决的三大问题。骨髓间充质干细胞(Mesenchym al stem cells,MSCs)是一种很有潜力的种子细胞,但挑选什么样的MSCs作为种子细胞目前研究尚少;而材料方面,研制力学性能和生物相容性...种子细胞、支架材料及二者的相互作用是骨组织工程需要解决的三大问题。骨髓间充质干细胞(Mesenchym al stem cells,MSCs)是一种很有潜力的种子细胞,但挑选什么样的MSCs作为种子细胞目前研究尚少;而材料方面,研制力学性能和生物相容性均好的可降解多孔支架材料一直是研究者努力的方向。为了挑选处于最佳时期的种子细胞以及最适比例的β- TCP/PL L A多孔支架材料,我们观察并检测了大鼠MSCs(r MSCs)成骨诱导后不同时期细胞的形态及功能,发现r MSCs成骨诱导后10 d左右开始进入增殖期,14 d左右进入基质合成期,2 0 d左右进入矿化结节期(但三者不是截然分开的) ,从而根据实验目的挑选出能作为骨组织工程用的最佳细胞。将该时期的种子细胞与不同比例的β- TCP/PL L A多孔支架材料复合后,通过荧光显微镜、扫描电镜以及MTT等方法初步比较了不同比例的材料对细胞生长状况的影响,结果显示不同比例的材料均具有一定的生物相容性,细胞生长良好。但以β- TCP/PL L A=2∶1的材料最好,对细胞的生长影响最小。展开更多
The toughened poly(L-lactic acid)/poly(butylene succinate-butylene terephthalate)(PLLA/PBST) blend with enhanced melt strength and excellent low temperature toughness and strength was prepared by melt compounding thro...The toughened poly(L-lactic acid)/poly(butylene succinate-butylene terephthalate)(PLLA/PBST) blend with enhanced melt strength and excellent low temperature toughness and strength was prepared by melt compounding through in situ compatibilization reaction in presence of multifunctional epoxy compound(ADR).The PLLA/PBST blend was an immiscible system,and the compatibility of the PLLA/PBST blend was improved after adding ADR.FTIR and GPC curves confirmed the formation of the PLLA-g-PBST copolymer,which improved the interfacial bonding of the blend and therefore the PLLA/PBST/ADR blend showed excellent melt strength and mechanical properties.For the PLLA/PBST/ADR blend with 70/30 PLLA/PBST content,the complex viscosity increased significantly with increasing ADR content.Moreover,the tensile strength,elongation at break and impact strength all increased obviously with increasing the ADR content.The elongation at break of the blend reached the maximum value of 392.7%,which was 93.2 times that of neat PLLA.And the impact strength of the blend reached the maximum value of 74.7 k J/m~2,which was 21.3 times that of neat PLLA.Interestingly,the PLLA/PBST/ADR blend exhibited excellent lowtemperature toughness and strength.At –20 ℃,the elongation at break of the PLLA/PBST/ADR blend was as high as 93.2%,and the impact strength reached 18.8 k J/m~2.Meanwhile,the tensile strength of the blend at low temperature was also high(64.7 MPa),which was beneficial to the application of PLA in the low temperature field.In addition,the PLLA/PBST/ADR blend maintaind good biodegradability,which was of great significance to the wide application of PLLA.展开更多
To develop a novel degradable poly (L-lactic acid)/β-tricalcium phosphate (PLLA/β-TCP) bioactive materials for bone tissueengineering, β-TCP powder was produced by a new wet process. Porous scaffolds were prepared ...To develop a novel degradable poly (L-lactic acid)/β-tricalcium phosphate (PLLA/β-TCP) bioactive materials for bone tissueengineering, β-TCP powder was produced by a new wet process. Porous scaffolds were prepared by three steps, i.e. solventcasting, compression molding and leaching stage. Factors influencing the compressive strength and the degradation behaviorof the porous scaffold, e.g. weight fraction of pore forming agent-sodium chloride (NaCl), weight ratio of PLLA: β-TCP,the particle size of β-TCP and the porosity, were discussed in details. Rat marrow stromal cells (RMSC) were incorporatedinto the composite by tissue engineering approach. Biological and osteogenesis potential of the composite scaffold weredetermined with MTT assay, alkaline phosphatase (ALP) activity and bone osteocalcin (OCN) content evaluation. Resultsshow that PLLA/β-TCP bioactive porous scaffold has good mechanical and pore structure with adjustable compressive strengthneeded for surgery. RMSCs seeding on porous PLLA/β-TCP composite behaves good seeding efficacy, biocompatibility andosteoinductive potential. Osteoprogenitor cells could well penetrate into the material matrix and begin cell proliferation andosteogenic differentiation. Osseous matrix could be formed on the surface of the composite after culturing in vitro. It isexpected that the PLLA/β-TCP porous composites are promising scaffolds for bone tissue engineering in prosthesis surgery.展开更多
Poly (lactic acid) (PLA) was synthesized by microwave-assisted ring-opening polymerization of D, L-lactide with stannous octanoate (SnOct(2)) as catalyst. Its weight-average molar mass (M-w) ranged from 39000 to 67000...Poly (lactic acid) (PLA) was synthesized by microwave-assisted ring-opening polymerization of D, L-lactide with stannous octanoate (SnOct(2)) as catalyst. Its weight-average molar mass (M-w) ranged from 39000 to 67000 and the polydispersity index from 1.3 to 1.7. The polymerization rate was much faster than that of the conventional thermal polymerization. A degradation of newly formed PLA in reaction mixture by microwave irradiation was observed.展开更多
基金This study was supported by the National Natural Science Foundation of China(No.30270395 and 30300084)the National"863"Project(No.2003AA32X210).
文摘A novel poly(d, /-lactic acid) (PDLLA) based biomimetic polymer was synthesized by grafting maleic anhydride, butanediamine and arg-gly-asp-ser (RGDS) peptides onto the backbone of PDLLA, aiming to overcome the acidity and auto-accelerating degradation of PDLLA during degradation and to improve its biospecificity and biocompatibility. The synthetic copolymer was characterized by FTIR, ^13C NMR and amino acid analyzer (AAA).
基金Supported by the National Natural Science Foundation of China (20876042) Program of Shanghai Subject Chief Scientist (10XD1401500) Research Fund for the Doctoral Program of Higher Education of China
文摘The effect of a novel active nucleating agent(TBC8-eb) on the isothermal crystallization of poly(L-lactic acid) (PLLA) was studied by differential scanning calorimetry(DSC) and Fourier transform infrared spectroscopy(FTIR) . The analysis on kinetics demonstrates that TBC8-eb can not only accelerate the crystallization rate but also transform most of the original spherulite crystals of PLLA into sheaf-like crystals. Furthermore,the free energy of folding(σe) of PLLA and PLLA with TBC8-eb is 0.15 and 0.06 J·m-2,respectively,which suggests that the addition of TBC8-eb favors the regular folding of molecule chains in the crystallization of PLLA,improv-ing its crystallization rate. The FTIR results show that TBC8-eb can accelerate the conformational ordering of PLLA in the isothermal crystallization. The conformational ordering of PLLA nucleated with TBC8-eb begins with the interchain interaction of CH3,and then a short helix emerges where a couple of CH3 groups interact.
文摘Biodegradable chitosan-g-poly (D, L-lactic acid) copolymers were prepared via two methods. (1) The lactide was grafted onto hydroxyl groups of chitosan by using macromolecular initiator sodium of trimethylsilyl-chitosan, (2) poly (D,L-lactic acid)(PLA) with low molecular weight can be linked to the amino group by coupling activated PLA to trimethylsilyl-chitosan. Two graft copolymers had hydrophilic-hydrophobic character and can be applied as carriers for drug delivery.
基金This work was financially supported by the following funds:Hunan Provincial Natural Foundation of China(2019JJ50472)Opening Fund of National&Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources(KF201802)+4 种基金Hunan Province Key Field R&D Program Project(2019GK2246)Education Department of Hunan Province Key Project(19A391)Key scientific research project of Huaihua University(HHUY2019-04)Special Project of Innovative Provincial Construction in Hunan Province(2020RC1013)Huaihua Key Laboratory for Preparation of Ceramic Materials and Devices and Science and Technology Plan Project of Huaihua City(2020R3101).
文摘Poly(L-lactic acid)(PLLA)is a thermoplastic material with complete degradability,high biocompatibility and excellent mechanical properties.It can replace petroleum-based polymers are currently being used in the fields of packaging,agriculture,textiles,medical and so on.However,PLLA’s extremely flammability greatly limits its wider application.An bio-based flame retardant L-APP/PLLA composites was prepared by melt blending of the L-APP and PLLA.The morphology,impact properties,thermal properties and flame retardant properties of composites were investigated by field emission scanning electron microscope(SEM),impact tester,differential scanning calorimeter(DSC),thermogravimetric analyzer(TGA),limiting oxygen indexer(LOI)and horizontalvertical burning tester.The results showed that the degree of crystallization(X_(c))and LOI of L-APP/PLLA composites increased as increasing of L-APP content.What’s more,the impact strength first increased and then decreased,the glass transition temperature(T_(g))and melting temperature(T_(m))do not changed significantly.The impact strength of composites was 9.1 kJ/m^(2) at a 5 wt%loading for L-APP,which was the highest level.When the content of L-APP was 20%,the LOI was 30.8%,the Xc was 42.3%and the UL-94 level was V-0.This research can promote the value-added utilization of lignin and the application of PLLA in the fields of flame retardant materials.
基金The authors thank the Ministry of Science and Technology,the National Natural Science Foundation of China and the Ministry of Education of China for supporting of this research(Grant No.G199905305,59973014 and 98005620,respectively).
文摘In this paper, the surface structure of poly(L-lactic acid) (PLLA) film modified with gelatin was investigated. ThePLLA film specimens were treated directly with aqueous alkali solution to provide their surfaces with carboxyl groups, sothat these functional groups could become the reactive sites for gelatin immobilization. The functional groups of the PLLAfilms were identified by ATR-FTIR spectra and XPS spectra, the changes in surface morphology were observed by usingenvironmental scanning electron microscopy (ESEM), and the hydrophilicity of modified PLLA films was examined bywater contact angle measurement. Experimental results showed that the gelatin was immobilized with water-solublecarbodiimide (EDC) onto the PLLA film's surfaces, and the gelatin content on the polymer surface was related to carboxylicgroup formed in the controlled hydrolysis process. Rough surfaces caused by hydrolysis will predominantly favor the adhesion and growth of cell; and the hydrophilicity of these surfaces after the modification procedure is enhanced.
文摘Spherulitic morphology of pure poly lactic acid (PLLA) PLLA have investigated after thermal annealing. The morphology of spherulite of pure poly lactic acid (PLLA) PLLA have investigated after thermal annealing. The effect of both annealing temperature and crystallization temperature on the formation of cracks was described by polarized optical microscope (POM). Non banded spherulite (fibrils) with cracks was detected in PLLA film after annealing at 160°C (180 min.) and isothermal crystallization temperatures at 140°C and 150°C. With increasing temperature after annealing treatment the size of spherulite is increased and more cracks are formed. The maximum growth rate of spherulites was found at 130°C. The physical ageing was carried out by annealing the PLLA sample at room temperature for several annealing time (ta) from 0 h to 720 h. The enthalpy relaxation has been studied by differential scanning calorimetry (DSC) through analysis of the endothermic peak of glass transition temperature, which increased and shifted towards higher temperature as the annealing time increased.
基金Supported by the National Natural Science Foundation of China (21076084)the Fundamental Research Funds for the Central Universities (2011ZZ0006)the Open Project Program of Provincial Key Laboratory of Green Processing Technology and Product Safety of Natural Products
文摘Paclitaxel(PTX) is an effective anticancer drug with poor solubility in water.Recently,much effort has been devoted into alternative formulations of PTX for improving its aqueous solubility.In this study,PTX and poly(L-lactic acid)(PLLA) were co-precipitated by a supercritical antisolvent(SAS) process using dichloromethane(DCM) and the mixtures of DCM/ethanol(EtOH) or DCM/dimethyl sulfoxide(DMSO) as the solvent,with super-critical carbon dioxide as the antisolvent.The effects of solvent,solvent ratio,temperature,pressure,polymer con-centration and solution flow rate on particle morphology,mass median diameter(Dp50) and PTX loading were in-vestigated using single-factor method.The particle samples were characterized using X-ray diffraction(XRD),scanning electron microscopy(SEM),laser diffraction particle size analyzer and high pressure liquid chromatogra-phy(HPLC).XRD results indicate that the micronized PTX is dispersed into the PLLA matrix in an amorphous form.SEM indicates that the solvent and the solvent ratio have great effect on the particle morphologies,and particle morphology is good at the volume ratio of DCM/EtOH of 50/50.For the mixed DCM/EtOH solvent,Dp50 increases with the increase of the temperature,pressure,PLLA concentration and solution flow rate,and PTX loading in-creases with pressure.Suitable operating conditions for the experimental system are as follows:DCM/EtOH 50/50(by volume),35 ℃,10-12 MPa,PLLA concentration of 5 g·L-1 and solution flow rate of 0.5 ml·min-1.
基金funded by the Russian Ministry of Education and Science(state contract no.14.W03.31.0014,MegaGrant).
文摘The biocomposite films were prepared from poly(L-lactic acid)and cellulose nanocrystals.To improve interfacial compatibility of hydrophilic cellulose nanocrystals with hydrophobic matrix polymer as well as to provide the osteoconductive properties,cellulose was functionalized with poly(glutamic acid).The modified cellulose nanocrystals were better distributed and less aggregated within the matrix,which was testified by scanning electron,optical and polarized light microscopy.According to mechanical tests,composites filled with nanocrystals modified with PGlu demonstrated higher values of Young’s modulus,elongation at break and tensile strength.Incubation of composite materials in model buffer solutions for 30 weeks followed with staining of Ca^(2+)deposits with Alizarin Red S assay testified better mineralization of materials containing PGlu-modified cellulose nanocrystals as filler.As the result of in vivo experiment,the developed composite materials showed less level of inflammation in comparison with pure polymer matrix and composites filled with non-functionalized cellulose nanocrystals.
基金supported by the National Natural Science Foundation of China,No.51073072the Natural Science Foundation of Zhejiang Province in China,No.Y4100745+1 种基金the Key Laboratory Open Foundation of Advanced Textile Materials&Manufacturing Technology of Zhejiang Sci-Tech University from Ministry of Education of China,No.2009007the Science and Technology Commission of Jiaxing Municipality Program,No.2010AY1089
文摘In this study, poly(L-lactic acid)/ammonium persulfate doped-polypyrrole composite fibrous scaffolds with moderate conductivity were produced by combining electrospinning with in situ polymerization. PC12 cells were cultured on these fibrous scaffolds and their growth following electrical stimulation (0-20.0 μA stimulus intensity, for 1-4 days) was observed using inverted light microscopy, and scanning electron microscopy coupled with the MTT cell viability test. The results demonstrated that the poly(L-lactic acid)/ammonium persulfate doped-polypyrrole fibrous scaffold was a dual multi-porous micro/nano fibrous scaffold. An electrical stimulation with a current intensity 5.0- 10.0 μAfor about 2 days enhanced neuronal growth and neurite outgrowth, while a high current intensity (over 15.0 μA) suppressed them. These results indicate that electrical stimulation with a moderate current intensity for an optimum time frame can promote neuronal growth and neurite outgrowth in an intensity- and time-dependent manner.
文摘种子细胞、支架材料及二者的相互作用是骨组织工程需要解决的三大问题。骨髓间充质干细胞(Mesenchym al stem cells,MSCs)是一种很有潜力的种子细胞,但挑选什么样的MSCs作为种子细胞目前研究尚少;而材料方面,研制力学性能和生物相容性均好的可降解多孔支架材料一直是研究者努力的方向。为了挑选处于最佳时期的种子细胞以及最适比例的β- TCP/PL L A多孔支架材料,我们观察并检测了大鼠MSCs(r MSCs)成骨诱导后不同时期细胞的形态及功能,发现r MSCs成骨诱导后10 d左右开始进入增殖期,14 d左右进入基质合成期,2 0 d左右进入矿化结节期(但三者不是截然分开的) ,从而根据实验目的挑选出能作为骨组织工程用的最佳细胞。将该时期的种子细胞与不同比例的β- TCP/PL L A多孔支架材料复合后,通过荧光显微镜、扫描电镜以及MTT等方法初步比较了不同比例的材料对细胞生长状况的影响,结果显示不同比例的材料均具有一定的生物相容性,细胞生长良好。但以β- TCP/PL L A=2∶1的材料最好,对细胞的生长影响最小。
基金financially supported by the Science and Technology Development Plan of Jilin Province (No. 20210203199SF)。
文摘The toughened poly(L-lactic acid)/poly(butylene succinate-butylene terephthalate)(PLLA/PBST) blend with enhanced melt strength and excellent low temperature toughness and strength was prepared by melt compounding through in situ compatibilization reaction in presence of multifunctional epoxy compound(ADR).The PLLA/PBST blend was an immiscible system,and the compatibility of the PLLA/PBST blend was improved after adding ADR.FTIR and GPC curves confirmed the formation of the PLLA-g-PBST copolymer,which improved the interfacial bonding of the blend and therefore the PLLA/PBST/ADR blend showed excellent melt strength and mechanical properties.For the PLLA/PBST/ADR blend with 70/30 PLLA/PBST content,the complex viscosity increased significantly with increasing ADR content.Moreover,the tensile strength,elongation at break and impact strength all increased obviously with increasing the ADR content.The elongation at break of the blend reached the maximum value of 392.7%,which was 93.2 times that of neat PLLA.And the impact strength of the blend reached the maximum value of 74.7 k J/m~2,which was 21.3 times that of neat PLLA.Interestingly,the PLLA/PBST/ADR blend exhibited excellent lowtemperature toughness and strength.At –20 ℃,the elongation at break of the PLLA/PBST/ADR blend was as high as 93.2%,and the impact strength reached 18.8 k J/m~2.Meanwhile,the tensile strength of the blend at low temperature was also high(64.7 MPa),which was beneficial to the application of PLA in the low temperature field.In addition,the PLLA/PBST/ADR blend maintaind good biodegradability,which was of great significance to the wide application of PLLA.
基金This study was financially supported by 863 Hj-Tech ResearchDevelopment Program of China(2002AA326080)The Fund for Youth Teacher of Education Mlinistry of China(2002123).
文摘To develop a novel degradable poly (L-lactic acid)/β-tricalcium phosphate (PLLA/β-TCP) bioactive materials for bone tissueengineering, β-TCP powder was produced by a new wet process. Porous scaffolds were prepared by three steps, i.e. solventcasting, compression molding and leaching stage. Factors influencing the compressive strength and the degradation behaviorof the porous scaffold, e.g. weight fraction of pore forming agent-sodium chloride (NaCl), weight ratio of PLLA: β-TCP,the particle size of β-TCP and the porosity, were discussed in details. Rat marrow stromal cells (RMSC) were incorporatedinto the composite by tissue engineering approach. Biological and osteogenesis potential of the composite scaffold weredetermined with MTT assay, alkaline phosphatase (ALP) activity and bone osteocalcin (OCN) content evaluation. Resultsshow that PLLA/β-TCP bioactive porous scaffold has good mechanical and pore structure with adjustable compressive strengthneeded for surgery. RMSCs seeding on porous PLLA/β-TCP composite behaves good seeding efficacy, biocompatibility andosteoinductive potential. Osteoprogenitor cells could well penetrate into the material matrix and begin cell proliferation andosteogenic differentiation. Osseous matrix could be formed on the surface of the composite after culturing in vitro. It isexpected that the PLLA/β-TCP porous composites are promising scaffolds for bone tissue engineering in prosthesis surgery.
文摘Poly (lactic acid) (PLA) was synthesized by microwave-assisted ring-opening polymerization of D, L-lactide with stannous octanoate (SnOct(2)) as catalyst. Its weight-average molar mass (M-w) ranged from 39000 to 67000 and the polydispersity index from 1.3 to 1.7. The polymerization rate was much faster than that of the conventional thermal polymerization. A degradation of newly formed PLA in reaction mixture by microwave irradiation was observed.