Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium ...Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol.However,the utilization of this catalyst presents several challenges during the process,including equipment corrosion,the generation of solid waste,susceptibility to deactivation,and complexities in separation and recovery.To address these limitations,a series of alkaline poly(ionic liquid)s,i.e.[DVBPIL][PHO],[DVCPIL][PHO],and[TBVPIL][PHO],with different crosslinking degrees and structures,were synthesized through the construction of cross-linked polymeric monomers and functionalization.These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics.Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC.It was discovered that the appropriate cross-linking degree and structure of the[DVCPIL][PHO]catalyst resulted in a DMC yield of up to 80.6%.Furthermore,this catalyst material exhibited good stability,maintaining its catalytic activity after repeated use five times without significant changes.The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC.展开更多
A novel direct method for preparation of dimethyl carbonate and poly(ethylene terephthalate) from ethylene carbonate and dimethyl terephthalate has been demonstrated in the presence of metal acetate catalysts, lithi...A novel direct method for preparation of dimethyl carbonate and poly(ethylene terephthalate) from ethylene carbonate and dimethyl terephthalate has been demonstrated in the presence of metal acetate catalysts, lithium acetate dihydrate showed highest catalytic activity with 47.9% yield of dimethyl carbonate. This method was a green chemical process.展开更多
The depolymerization of poly(bisphenol A carbonate)(PC) in subcritical and supercritical toluene was studied. The experimental parameters, which influence the depolymerization reaction such as temperature (570-63...The depolymerization of poly(bisphenol A carbonate)(PC) in subcritical and supercritical toluene was studied. The experimental parameters, which influence the depolymerization reaction such as temperature (570-633 K), pressure (4.0-7.0 MPa), reaction time (5-60 min), and toluene to PC weight ratio (3.0-11.0), were investigated, and the reaction products were determined by CrC, GC/MS and FT-IR spectrometer. It was found that the main product of the depolymerization reaction was bisphenol A(BPA). BPA accounted for over 55.7% of the depolymerization products at reaction temperature 613 K, pressure 5.0-6.0 MPa, reaction time 15 min and toluene/PC weight ratio of around 7.0.展开更多
Dimethyl carbonate (DMC) and poly(ethylene terephthalate) was simultaneously synthesized by the transesterification of ethylene carbonate (EC) with dimethyl terephthalate (DMT) in this paper. This reaction is ...Dimethyl carbonate (DMC) and poly(ethylene terephthalate) was simultaneously synthesized by the transesterification of ethylene carbonate (EC) with dimethyl terephthalate (DMT) in this paper. This reaction is an excellent green chemical process without poisonous substance. Various alkali metals were used as the catalysts. The results showed alkali metals had catalytic activity in a certain extent. The effect of reaction condition was also studied. When the reaction was carded out under the following conditions: the reaction temperature 250℃, molar ratio of EC to DMT 3 : 1, reaction time 3h, and catalyst amount 0.004 (molar ratio to DMT), the yield of DMC was 68.9%.展开更多
The surface phase separated structure of polyurethanes is always desired due to the advantage of better biocompatibility, compared with the homogeneous one. The key issue is how to control and characterize the surface...The surface phase separated structure of polyurethanes is always desired due to the advantage of better biocompatibility, compared with the homogeneous one. The key issue is how to control and characterize the surface morphology. In this work, we report the uppermost surface morphology of fluorinated poly(carbonate urethane)s with fluorinated side chains attached to hard segments as studied by AFM, XPS and contact angle measurement. A self-assembled micro-domain with the fluorinated side chain standing up on the uppermost surface has been proposed for polyurethane with higher fluorinated content, based on the result obtained.展开更多
The completely degradable nanocomposites comprised of poly(propylene carbonate)(PPC) and organo-modified rectorite (OREC) were prepared by direct melt intercalation. The structure and mechanical properties of PPC/OREC...The completely degradable nanocomposites comprised of poly(propylene carbonate)(PPC) and organo-modified rectorite (OREC) were prepared by direct melt intercalation. The structure and mechanical properties of PPC/OREC nanocomposites were investigated. The wide-angle X-ray diffraction (WAXD) results show that the galleries distance of OREC is increased after PPC and OREC melt intercalation, which indicates that PPC molecular chain has intercalated into the layers of OREC. The PPC/OREC nanocomposites with lower OREC content show an increase in thermal decomposition temperature compared with pure PPC. The tensile strength and impact strength of PPC/OREC nanocomposites are improved. When the mass fraction of OREC is 4%, the tensile strength and impact strength of the PPC/OREC nanocomposite increase by 22.86% and 48.58% respectively, compared with pure PPC.展开更多
A new six-membered cyclic carbonate monomer, 5-allyloxytrimethylene carbonate (ATMC), was synthesized starting from glycerol, and the corresponding polycarbonates, poly(5-allyloxytrimethylene carbonate)(PATMC) w...A new six-membered cyclic carbonate monomer, 5-allyloxytrimethylene carbonate (ATMC), was synthesized starting from glycerol, and the corresponding polycarbonates, poly(5-allyloxytrimethylene carbonate)(PATMC) were further synthesized by ring-opening polymerization in bulk at 150℃ using stannous octanoate as an initiator. The structures of the monomer and the polymers were confirmed by IR, IH-NMR, 13C-NMR, and GPC analysis.展开更多
In this article, the transesterification of poly(bisphenol A carbonate) (PC) with butylene terephthalate-caprolactone copolyester at a weight ratio 50/50 (BCL(21)) was thoroughly investigated by proton nuclear magneti...In this article, the transesterification of poly(bisphenol A carbonate) (PC) with butylene terephthalate-caprolactone copolyester at a weight ratio 50/50 (BCL(21)) was thoroughly investigated by proton nuclear magnetic resonance spectroscopy ('H-NMR), in conjunction with a model compound. The 1 H-NMR results of the annealed blend PC/BCL(21) show that the formation of bisphenol A-terephthalate ester units is the same as in the annealed blend of PC with PBT, and the transesterification actually occurs between PC and butylene terephthalate (BT) segments in BCL(21). By comparison with the model compound bisphenol A dibutyrate, the new signal appearing at δ= 2.56 in the 1H-NMR spectrum confirms the existence of bisphenol A caprolactone ester units resulting from the exchange reaction of PC with caprolactone (CL) segments. 1H-NMR analysis of the transesterification rates reveals that the reaction of PC with aromatic and aliphatic segments in BCL(21) proceeds in a random manner. The miscibility of the blend PC/BCL(21) copolyester is favorable for the transesterification of PC with BT segments and CL segments.展开更多
Novel amphiphilic triblock copolymer poly(p-dioxanone-co-5-benzyloxytrimethylene carbonate)-block-poly(ethylene glycol)-block-poly(p-dioxanone-co-5-benzyloxytrimethylene carbonate) (p(PDO-co-BTMC)-b-PEG-b-p(...Novel amphiphilic triblock copolymer poly(p-dioxanone-co-5-benzyloxytrimethylene carbonate)-block-poly(ethylene glycol)-block-poly(p-dioxanone-co-5-benzyloxytrimethylene carbonate) (p(PDO-co-BTMC)-b-PEG-b-p(PDO-co-BTMC)) was successfully synthesized using immobilized porcine pancreas lipase on porous silica particles (IPPL) as the catalyst for the fLrSt time. 1H NMR, 13C NMR and GPC analysis were used to confirm the structures of resulting copolymers. The molecular weight (Mn) of the copolymer with feed ratio of 69:20:11 (BTMC: PDO: PEG ) was 31300 g/mol and the polydispersity was 1.85, while the Mn decreased to 25000 g/mol and polydispersity of 1.93 with the feed ratio of 50:40:10.展开更多
Effect of the concentration ratios of organosiloxane/initiator and treatment temperature on the characteristics of hydrophobic products obtained by modification of surface of fumed silica with poly(methylphenylsiloxan...Effect of the concentration ratios of organosiloxane/initiator and treatment temperature on the characteristics of hydrophobic products obtained by modification of surface of fumed silica with poly(methylphenylsiloxane) (PMPS) in the presence of dimethyl carbonate has been studied. Morphology, particle size, surface area and coating microstructure of modified silicas were analyzed by methods of transmission electron and atomic force microscopies, nitrogen adsorption-desorption data. Carbon contents in the grafted modifying layer of organosilicas were determined using IR spectroscopy and elemental analysis. Hydrophilic-hydrophobic properties of surface of the obtained modified silicas were estimated by measurements of contact angles of wetting. It was shown that modification of pyrogenic silicas with mixtures of poly(methylphenylsiloxane) and dimethyl carbonate allows to obtain the homogeneous hydrophobic products and serve their nanodispersity.展开更多
Poly(vinylidene fluoride)(PVDF)/multi-walled carbon nanotube(MWCNT) nanocomposites were prepared by means of ultrasonic dispersion method. X-ray diffraction(XRD) results indicate that incorporating MWCNTs into...Poly(vinylidene fluoride)(PVDF)/multi-walled carbon nanotube(MWCNT) nanocomposites were prepared by means of ultrasonic dispersion method. X-ray diffraction(XRD) results indicate that incorporating MWCNTs into PVDF caused the formation of β phase. A thermal annealing at 130 ℃ confirmed that the β phase was stable in the nanocomposites. Differential scanning calorimetry(DSC) results indicate that the melting temperature slightly increased while the heat of fusion markedly decreased with increasing MWCNT content. The tensile strength and modulus of PVDF were improved by loading the MWCNTs. The scanning electron microscopy(SEM) observations showed that MWCNTs were uniformly dispersed in the PVDF matrix and an interfacial adhesion between MWCNT and PVDF was achieved, which was responsible for the enhancement in the tensile strength and modulus of PVDE.展开更多
The reaction between ethylene carbonate and dimethyl terephthalate was carried out for the simultaneous synthesis of dimethyl carbonate and poly(ethylene terephthalate), This reaction is an excellent chemical proces...The reaction between ethylene carbonate and dimethyl terephthalate was carried out for the simultaneous synthesis of dimethyl carbonate and poly(ethylene terephthalate), This reaction is an excellent chemical process that is environmentally friendly and produces no poisonous substance. The metal acetate catalysts used for this reaction are discussed in detail. Lithium acetate dihydrate was found to be a novel and efficient catalyst for this reaction. Compared with other metal acetates, lithium acetate dihydrate can attain a maximum catalytic activity at a lower concentration. When the reaction was carried out under the following conditions: the reaction temperature from 230 to 250 ℃, molar ratio of ethylene carbonate(EC) to dimethyl terephthalate(DMT) 3: 1, reaction time 3 h, and a catalyst amount of 0. 4% (molar fraction to DMT), the yield of dimethyl carbonate(DMC) was 79. 1%.展开更多
In this paper, an amperometric acetylcholinesterase(ACh E) biosensor for quantitative determination of carbaryl was developed. Firstly, the poly(diallyldimethy-lammonium chloride)-multi-walled carbon nanotubes-graphen...In this paper, an amperometric acetylcholinesterase(ACh E) biosensor for quantitative determination of carbaryl was developed. Firstly, the poly(diallyldimethy-lammonium chloride)-multi-walled carbon nanotubes-graphene hybrid film was modified onto the glassy carbon electrode(GCE) surface, then ACh E was immobilized onto the modified GCE to fabricate the ACh E biosensor. The morphologies and electrochemistry properties of the prepared ACh E biosensor were investigated by using scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. All variables involved in the preparation process and analytical performance of the biosensor were optimized. Based on the inhibition of pesticides on the ACh E activity, using carbaryl as model compounds, the biosensor exhibited low detection limit, good reproducibility and high stability in a wide range. Moreover, the biosensor can also be used for direct analysis of practical samples, which would provide a new promising tool for pesticide residues analysis.展开更多
In this paper,blend membranes from polyvinyl acetate(PVAc)and block copolymer poly(amide-12-b-ethylene oxide)(Pebax1074)are prepared by solution casting and solvent evaporation method.Although they are homogeneous on ...In this paper,blend membranes from polyvinyl acetate(PVAc)and block copolymer poly(amide-12-b-ethylene oxide)(Pebax1074)are prepared by solution casting and solvent evaporation method.Although they are homogeneous on a macro-scale,the observations from DSC and SEM indicate micro-phase separation for PVAc/Pebax1074 blend membranes.With the increase of Pebax1074 content,gas permeabilities of CO2,H2,N2and CH4all increase greatly.PVAc/Pebax1074 blend membranes with high PVAc content are appropriate for CO2/CH4separation.The temperature dependence of gas permeability is divided into rubbery region and glassy region.The activation energies of permeation in rubbery region are smaller than those in glassy region,and they all decrease with increasing Pebax1074 content.For N2,H2and CH4,their gas permeation properties are mainly influenced by the dual-mode sorption and hydrostatic pressure effect.But for CO2,its permeability increases with the increase of pressure due to CO2-induced plasticization effect,which is more obvious for PVAc/Pebax1074 blend membranes with high PVAc content.展开更多
Poly(amide-6-b-ethylene oxide)(Pebax1657)/1-butyl-3-methylimidazo-lium bis[trifluoromethyl)sulfonyl]-imide([Bmim][Tf2N]) blend membranes with different [Bmim][Tf2N] contents were prepared via solution casting a...Poly(amide-6-b-ethylene oxide)(Pebax1657)/1-butyl-3-methylimidazo-lium bis[trifluoromethyl)sulfonyl]-imide([Bmim][Tf2N]) blend membranes with different [Bmim][Tf2N] contents were prepared via solution casting and solvent evaporation method. The permeation properties of the blend membranes for CO2, N2,CH4 and H2 were studied, and the physical properties were characterized by differential scanning calorimeter(DSC) and X-ray diffraction(XRD). Results showed that [Bmim][Tf2N] was dispersed as amorphous phase in the blend membranes, which caused the decrease of Tg(PE) and crystallinity(PA). With the addition of [Bmim][Tf2N], the CO2 permeability increased and reached up to approximately 286 Barrer at 40 wt%[Bmim][Tf2N], which was nearly double that of pristine Pebax1657 membrane. The increase of CO2 permeability may be attributed to high intrinsic permeability of [Bmim][Tf2N], the increase of fractional free of volume(FFV) and plasticization effect. However, the CO2 permeability reduced firstly when the [Bmim][Tf2N]content was below 10 wt%, which may be due to that the small ions of [Bmim][Tf2N] in the gap of polymer chain inhibited the flexibility of polymer chain; the interaction between Pebax1657 and [Bmim][Tf2N]decreased the content of EO units available for CO2 transport and led to a more compact structure. For Pebax1657/[Bmim][Tf2N] blend membranes, the permeabilities of N2, H2 and CH4decreased with the increase of feed pressure due to the hydrostatic pressure effect, while CO2 permeability increased with the increase of feed pressure for that the CO2-induced plasticization effect was stronger than hydrostatic pressure effect.展开更多
Heteroatom-doped carbon materials have demonstrated great potential in the electrochemical reduction reaction of CO_(2)(CO_(2)RR)due to their versatile structure and function.However,rational structure control remains...Heteroatom-doped carbon materials have demonstrated great potential in the electrochemical reduction reaction of CO_(2)(CO_(2)RR)due to their versatile structure and function.However,rational structure control remains one challenge.In this work,we reported a unique carbon precursor of soft template-containing porous poly(ionic liquid)(PIL)that was directly synthesized via free-radical self-polymerization of ionic liquid monomer in a soft template route.Variation of the carbonization temperature in a direct pyrolysis process without any additive yielded a series of carbon materials with facile adjustable textural properties and N species.Significantly,the integration of soft-template in the PIL precursor led to the formation of hierarchical porous carbon material with a higher surface area and larger pore size than that from the template-free precursor.In CO_(2)RR to CO,the champion catalyst gave a Faraday efficiency of 83.0%and a current density of 1.79 mA·cm^(-2)at-0.9 V vs.reversible hydrogen electrode(vs.RHE).The abundant graphite N species and hierarchical pore structure,especially the unique hierarchical small-/ultramicropores were revealed to enable better CO_(2)RR performance.展开更多
Poly(ethylene terephthalate) (PET)/carbon black (CB) masterbatch was prepared by melt blending using a separate feeding technique and its homogeneous dispersion morphology was confirmed by transmission electron micros...Poly(ethylene terephthalate) (PET)/carbon black (CB) masterbatch was prepared by melt blending using a separate feeding technique and its homogeneous dispersion morphology was confirmed by transmission electron microscope (TEM). The Avrami and Hoffman-Lauritzen secondary nucleation theories were employed to analyze the effect of high CB content on crystallization kinetics of PET, providing theoretical support for the development of masterbatch with high content of functional components. The Avrami exponents,average values of n,for PET and PET/CB masterbatch are both greater than 3, which indicates three-dimensional growth of crystals. In addition,no significant evidence for regime transition of PET is found applying Hoffman-Lauritzen secondary nucleation theory,though such observations have been reported previously in the literature. Furthermore,appropriate U* value for PET is determined to be 12 800 J/mol. For PET/CB masterbatch,a transition from regime I to regime II around 225℃ is observed with appropriate U* value (12 800 J/mol) . This phenomenon is consistent with a transition point in plot of G versus Tc . The fold surface free energy σe (100. 3 mJ/m 2) of PET is much greater than that of PET/CB masterbatch (48. 3 mJ/m 2) ,which indicates heterogeneous nucleation effect of CB particles.展开更多
Equilibrium sorption amount, desorption diffusion coefficients and sorption diffusion coefficients of CO2 in poly(l-lactic acid) (PLLA) films at elevated pressures were determined by the gravimetric method, in whi...Equilibrium sorption amount, desorption diffusion coefficients and sorption diffusion coefficients of CO2 in poly(l-lactic acid) (PLLA) films at elevated pressures were determined by the gravimetric method, in which the Fick's diffusion model was applied to analyze both the desorption and sorption processes. The equilibrium sorption amount of CO2 in PLLA increased with lowering temperature and elevating pressure at the temperature range from 40 to 60 ℃ and pressure from 10^4 to 2x10^4 kPa. Desorption diffusion coefficients were greatly influenced by the equilibrium sorption amount, and they were in the same order of magnitude as the sorption diffusion coefficients. The scan electron microscope (SEM) photos demonstrated that there was no foaming phenomenon of the PLLA film during desorption and sorption processes. The XRD spectra implied that the crystalline degree of PLLA film decreased after CO2 processing. It was concluded that PLLA polymer could be well swollen and plasticized by supercritical CO2.展开更多
Chloro(5,10,15,20-tetraphenyl-porphyrinato)-aluminum/tetraethylammonium bromide(Et4NBr)in combination with bulky Lewis acid was used for the copolymerization of CO_2 and cyclohexene oxide(CHO).Bulky Lewis acid having ...Chloro(5,10,15,20-tetraphenyl-porphyrinato)-aluminum/tetraethylammonium bromide(Et4NBr)in combination with bulky Lewis acid was used for the copolymerization of CO_2 and cyclohexene oxide(CHO).Bulky Lewis acid having substituents at the ortho positions of the phenolate ligands,like methylaluminum bis(2,6-di-tert-butyl-4-methylphenolate), significantly shortened the induction period and raised the catalytic activity,the corresponding turnover frequency reached 44.9 h^(-1)in 9 h,which was 23.8% higher than th...展开更多
A mild and facile way was used to prepare poly(nitriloethylenenitrilovinylene)-grafted multi-walled carbon nanotubes(MWCNTs-g-PNENV)nanocomposites via the"grafting to"method.The MWCNTs-g-PNENV nanocomposites...A mild and facile way was used to prepare poly(nitriloethylenenitrilovinylene)-grafted multi-walled carbon nanotubes(MWCNTs-g-PNENV)nanocomposites via the"grafting to"method.The MWCNTs-g-PNENV nanocomposites are well dispersible in polar solvents such as water,tetrahydrofuran and ethanol.Chemical structure of the resulting product was characterized by Fourier transform infrared(FTIR)spectroscopy,transmission electron microscopy(TEM)and thermal gravimetric analysis(TGA).FTIR showed that the"grafting to"process belonged to covalent attachment mechanisms.TEM observations indicated that the MWCNTs were coated with a uniform PNENV layer,and the MWCNTs existed as a hard backbone.TGA data also showed that the PNENV shell was successfully grafted to the side wall of MWCNTs.展开更多
基金supported by the National Key Research and Development Program of China(2022YFB4101800)National Natural Science Foundation of China(22278077,22108040)+2 种基金Key Program of Qingyuan Innovation Laboratory(00221004)Research Program of Qingyuan Innovation Laboratory(00523006)Natural Science Foundation of Fujian Province(2022J02019)。
文摘Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol.However,the utilization of this catalyst presents several challenges during the process,including equipment corrosion,the generation of solid waste,susceptibility to deactivation,and complexities in separation and recovery.To address these limitations,a series of alkaline poly(ionic liquid)s,i.e.[DVBPIL][PHO],[DVCPIL][PHO],and[TBVPIL][PHO],with different crosslinking degrees and structures,were synthesized through the construction of cross-linked polymeric monomers and functionalization.These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics.Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC.It was discovered that the appropriate cross-linking degree and structure of the[DVCPIL][PHO]catalyst resulted in a DMC yield of up to 80.6%.Furthermore,this catalyst material exhibited good stability,maintaining its catalytic activity after repeated use five times without significant changes.The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC.
文摘A novel direct method for preparation of dimethyl carbonate and poly(ethylene terephthalate) from ethylene carbonate and dimethyl terephthalate has been demonstrated in the presence of metal acetate catalysts, lithium acetate dihydrate showed highest catalytic activity with 47.9% yield of dimethyl carbonate. This method was a green chemical process.
文摘The depolymerization of poly(bisphenol A carbonate)(PC) in subcritical and supercritical toluene was studied. The experimental parameters, which influence the depolymerization reaction such as temperature (570-633 K), pressure (4.0-7.0 MPa), reaction time (5-60 min), and toluene to PC weight ratio (3.0-11.0), were investigated, and the reaction products were determined by CrC, GC/MS and FT-IR spectrometer. It was found that the main product of the depolymerization reaction was bisphenol A(BPA). BPA accounted for over 55.7% of the depolymerization products at reaction temperature 613 K, pressure 5.0-6.0 MPa, reaction time 15 min and toluene/PC weight ratio of around 7.0.
基金the National High Technology Research and Development Program of China(No.2003AA321010).
文摘Dimethyl carbonate (DMC) and poly(ethylene terephthalate) was simultaneously synthesized by the transesterification of ethylene carbonate (EC) with dimethyl terephthalate (DMT) in this paper. This reaction is an excellent green chemical process without poisonous substance. Various alkali metals were used as the catalysts. The results showed alkali metals had catalytic activity in a certain extent. The effect of reaction condition was also studied. When the reaction was carded out under the following conditions: the reaction temperature 250℃, molar ratio of EC to DMT 3 : 1, reaction time 3h, and catalyst amount 0.004 (molar ratio to DMT), the yield of DMC was 68.9%.
基金This work was supported by the China National Distinguished Young Investigator Fund (29925413) and the NationalNatural Science Foundation of China (Project number 50303014).
文摘The surface phase separated structure of polyurethanes is always desired due to the advantage of better biocompatibility, compared with the homogeneous one. The key issue is how to control and characterize the surface morphology. In this work, we report the uppermost surface morphology of fluorinated poly(carbonate urethane)s with fluorinated side chains attached to hard segments as studied by AFM, XPS and contact angle measurement. A self-assembled micro-domain with the fluorinated side chain standing up on the uppermost surface has been proposed for polyurethane with higher fluorinated content, based on the result obtained.
文摘The completely degradable nanocomposites comprised of poly(propylene carbonate)(PPC) and organo-modified rectorite (OREC) were prepared by direct melt intercalation. The structure and mechanical properties of PPC/OREC nanocomposites were investigated. The wide-angle X-ray diffraction (WAXD) results show that the galleries distance of OREC is increased after PPC and OREC melt intercalation, which indicates that PPC molecular chain has intercalated into the layers of OREC. The PPC/OREC nanocomposites with lower OREC content show an increase in thermal decomposition temperature compared with pure PPC. The tensile strength and impact strength of PPC/OREC nanocomposites are improved. When the mass fraction of OREC is 4%, the tensile strength and impact strength of the PPC/OREC nanocomposite increase by 22.86% and 48.58% respectively, compared with pure PPC.
基金support of the National Natural Science Foundation of China(Grant No.20104005)
文摘A new six-membered cyclic carbonate monomer, 5-allyloxytrimethylene carbonate (ATMC), was synthesized starting from glycerol, and the corresponding polycarbonates, poly(5-allyloxytrimethylene carbonate)(PATMC) were further synthesized by ring-opening polymerization in bulk at 150℃ using stannous octanoate as an initiator. The structures of the monomer and the polymers were confirmed by IR, IH-NMR, 13C-NMR, and GPC analysis.
文摘In this article, the transesterification of poly(bisphenol A carbonate) (PC) with butylene terephthalate-caprolactone copolyester at a weight ratio 50/50 (BCL(21)) was thoroughly investigated by proton nuclear magnetic resonance spectroscopy ('H-NMR), in conjunction with a model compound. The 1 H-NMR results of the annealed blend PC/BCL(21) show that the formation of bisphenol A-terephthalate ester units is the same as in the annealed blend of PC with PBT, and the transesterification actually occurs between PC and butylene terephthalate (BT) segments in BCL(21). By comparison with the model compound bisphenol A dibutyrate, the new signal appearing at δ= 2.56 in the 1H-NMR spectrum confirms the existence of bisphenol A caprolactone ester units resulting from the exchange reaction of PC with caprolactone (CL) segments. 1H-NMR analysis of the transesterification rates reveals that the reaction of PC with aromatic and aliphatic segments in BCL(21) proceeds in a random manner. The miscibility of the blend PC/BCL(21) copolyester is favorable for the transesterification of PC with BT segments and CL segments.
基金the financial support of the National Natural Science Foundation of China(No.20104005).
文摘Novel amphiphilic triblock copolymer poly(p-dioxanone-co-5-benzyloxytrimethylene carbonate)-block-poly(ethylene glycol)-block-poly(p-dioxanone-co-5-benzyloxytrimethylene carbonate) (p(PDO-co-BTMC)-b-PEG-b-p(PDO-co-BTMC)) was successfully synthesized using immobilized porcine pancreas lipase on porous silica particles (IPPL) as the catalyst for the fLrSt time. 1H NMR, 13C NMR and GPC analysis were used to confirm the structures of resulting copolymers. The molecular weight (Mn) of the copolymer with feed ratio of 69:20:11 (BTMC: PDO: PEG ) was 31300 g/mol and the polydispersity was 1.85, while the Mn decreased to 25000 g/mol and polydispersity of 1.93 with the feed ratio of 50:40:10.
文摘Effect of the concentration ratios of organosiloxane/initiator and treatment temperature on the characteristics of hydrophobic products obtained by modification of surface of fumed silica with poly(methylphenylsiloxane) (PMPS) in the presence of dimethyl carbonate has been studied. Morphology, particle size, surface area and coating microstructure of modified silicas were analyzed by methods of transmission electron and atomic force microscopies, nitrogen adsorption-desorption data. Carbon contents in the grafted modifying layer of organosilicas were determined using IR spectroscopy and elemental analysis. Hydrophilic-hydrophobic properties of surface of the obtained modified silicas were estimated by measurements of contact angles of wetting. It was shown that modification of pyrogenic silicas with mixtures of poly(methylphenylsiloxane) and dimethyl carbonate allows to obtain the homogeneous hydrophobic products and serve their nanodispersity.
基金Supported by the Research Fund for the Doctoral Program of Higher Education of China(No.20060183009)
文摘Poly(vinylidene fluoride)(PVDF)/multi-walled carbon nanotube(MWCNT) nanocomposites were prepared by means of ultrasonic dispersion method. X-ray diffraction(XRD) results indicate that incorporating MWCNTs into PVDF caused the formation of β phase. A thermal annealing at 130 ℃ confirmed that the β phase was stable in the nanocomposites. Differential scanning calorimetry(DSC) results indicate that the melting temperature slightly increased while the heat of fusion markedly decreased with increasing MWCNT content. The tensile strength and modulus of PVDF were improved by loading the MWCNTs. The scanning electron microscopy(SEM) observations showed that MWCNTs were uniformly dispersed in the PVDF matrix and an interfacial adhesion between MWCNT and PVDF was achieved, which was responsible for the enhancement in the tensile strength and modulus of PVDE.
基金the National High Technology Research and Development Program of China(No 2003AA321010)
文摘The reaction between ethylene carbonate and dimethyl terephthalate was carried out for the simultaneous synthesis of dimethyl carbonate and poly(ethylene terephthalate), This reaction is an excellent chemical process that is environmentally friendly and produces no poisonous substance. The metal acetate catalysts used for this reaction are discussed in detail. Lithium acetate dihydrate was found to be a novel and efficient catalyst for this reaction. Compared with other metal acetates, lithium acetate dihydrate can attain a maximum catalytic activity at a lower concentration. When the reaction was carried out under the following conditions: the reaction temperature from 230 to 250 ℃, molar ratio of ethylene carbonate(EC) to dimethyl terephthalate(DMT) 3: 1, reaction time 3 h, and a catalyst amount of 0. 4% (molar fraction to DMT), the yield of dimethyl carbonate(DMC) was 79. 1%.
基金supported by the National Natural Science Foundation of China(No.30972055,31101286)Agricultural Science and Technology Achievements Transformation Fund Projects of the Ministry of Science and Technology of China(No.2011GB2C60020)Shandong Provincial Natural Science Foundation,China(No.Q2008D03)
文摘In this paper, an amperometric acetylcholinesterase(ACh E) biosensor for quantitative determination of carbaryl was developed. Firstly, the poly(diallyldimethy-lammonium chloride)-multi-walled carbon nanotubes-graphene hybrid film was modified onto the glassy carbon electrode(GCE) surface, then ACh E was immobilized onto the modified GCE to fabricate the ACh E biosensor. The morphologies and electrochemistry properties of the prepared ACh E biosensor were investigated by using scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. All variables involved in the preparation process and analytical performance of the biosensor were optimized. Based on the inhibition of pesticides on the ACh E activity, using carbaryl as model compounds, the biosensor exhibited low detection limit, good reproducibility and high stability in a wide range. Moreover, the biosensor can also be used for direct analysis of practical samples, which would provide a new promising tool for pesticide residues analysis.
基金supported by the National Science and Technology Planning Project (No.2011BAC08B00)the National High Technology Research and Development Program of China (863 Program)(No.2012AA03A611)
文摘In this paper,blend membranes from polyvinyl acetate(PVAc)and block copolymer poly(amide-12-b-ethylene oxide)(Pebax1074)are prepared by solution casting and solvent evaporation method.Although they are homogeneous on a macro-scale,the observations from DSC and SEM indicate micro-phase separation for PVAc/Pebax1074 blend membranes.With the increase of Pebax1074 content,gas permeabilities of CO2,H2,N2and CH4all increase greatly.PVAc/Pebax1074 blend membranes with high PVAc content are appropriate for CO2/CH4separation.The temperature dependence of gas permeability is divided into rubbery region and glassy region.The activation energies of permeation in rubbery region are smaller than those in glassy region,and they all decrease with increasing Pebax1074 content.For N2,H2and CH4,their gas permeation properties are mainly influenced by the dual-mode sorption and hydrostatic pressure effect.But for CO2,its permeability increases with the increase of pressure due to CO2-induced plasticization effect,which is more obvious for PVAc/Pebax1074 blend membranes with high PVAc content.
基金supported by the National High Technology Research and Development Program of China(863 Program)(No.2012AA03A611)
文摘Poly(amide-6-b-ethylene oxide)(Pebax1657)/1-butyl-3-methylimidazo-lium bis[trifluoromethyl)sulfonyl]-imide([Bmim][Tf2N]) blend membranes with different [Bmim][Tf2N] contents were prepared via solution casting and solvent evaporation method. The permeation properties of the blend membranes for CO2, N2,CH4 and H2 were studied, and the physical properties were characterized by differential scanning calorimeter(DSC) and X-ray diffraction(XRD). Results showed that [Bmim][Tf2N] was dispersed as amorphous phase in the blend membranes, which caused the decrease of Tg(PE) and crystallinity(PA). With the addition of [Bmim][Tf2N], the CO2 permeability increased and reached up to approximately 286 Barrer at 40 wt%[Bmim][Tf2N], which was nearly double that of pristine Pebax1657 membrane. The increase of CO2 permeability may be attributed to high intrinsic permeability of [Bmim][Tf2N], the increase of fractional free of volume(FFV) and plasticization effect. However, the CO2 permeability reduced firstly when the [Bmim][Tf2N]content was below 10 wt%, which may be due to that the small ions of [Bmim][Tf2N] in the gap of polymer chain inhibited the flexibility of polymer chain; the interaction between Pebax1657 and [Bmim][Tf2N]decreased the content of EO units available for CO2 transport and led to a more compact structure. For Pebax1657/[Bmim][Tf2N] blend membranes, the permeabilities of N2, H2 and CH4decreased with the increase of feed pressure due to the hydrostatic pressure effect, while CO2 permeability increased with the increase of feed pressure for that the CO2-induced plasticization effect was stronger than hydrostatic pressure effect.
基金support from the National Natural Science Foundation of China(Nos.22072065,U1662107,and 21476109)Six talent peaks project in Jiangsu Province(JNHB035)+3 种基金State Key Laboratory of Materials-Oriented Chemical Engineering(KL17-04)Jiangsu Provincial Science Foundation for Youths(SBK2020044703)the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)High-Performance Computing Center of Nanjing Tech University。
文摘Heteroatom-doped carbon materials have demonstrated great potential in the electrochemical reduction reaction of CO_(2)(CO_(2)RR)due to their versatile structure and function.However,rational structure control remains one challenge.In this work,we reported a unique carbon precursor of soft template-containing porous poly(ionic liquid)(PIL)that was directly synthesized via free-radical self-polymerization of ionic liquid monomer in a soft template route.Variation of the carbonization temperature in a direct pyrolysis process without any additive yielded a series of carbon materials with facile adjustable textural properties and N species.Significantly,the integration of soft-template in the PIL precursor led to the formation of hierarchical porous carbon material with a higher surface area and larger pore size than that from the template-free precursor.In CO_(2)RR to CO,the champion catalyst gave a Faraday efficiency of 83.0%and a current density of 1.79 mA·cm^(-2)at-0.9 V vs.reversible hydrogen electrode(vs.RHE).The abundant graphite N species and hierarchical pore structure,especially the unique hierarchical small-/ultramicropores were revealed to enable better CO_(2)RR performance.
文摘Poly(ethylene terephthalate) (PET)/carbon black (CB) masterbatch was prepared by melt blending using a separate feeding technique and its homogeneous dispersion morphology was confirmed by transmission electron microscope (TEM). The Avrami and Hoffman-Lauritzen secondary nucleation theories were employed to analyze the effect of high CB content on crystallization kinetics of PET, providing theoretical support for the development of masterbatch with high content of functional components. The Avrami exponents,average values of n,for PET and PET/CB masterbatch are both greater than 3, which indicates three-dimensional growth of crystals. In addition,no significant evidence for regime transition of PET is found applying Hoffman-Lauritzen secondary nucleation theory,though such observations have been reported previously in the literature. Furthermore,appropriate U* value for PET is determined to be 12 800 J/mol. For PET/CB masterbatch,a transition from regime I to regime II around 225℃ is observed with appropriate U* value (12 800 J/mol) . This phenomenon is consistent with a transition point in plot of G versus Tc . The fold surface free energy σe (100. 3 mJ/m 2) of PET is much greater than that of PET/CB masterbatch (48. 3 mJ/m 2) ,which indicates heterogeneous nucleation effect of CB particles.
基金Supported by the National Natura Science Foundation of China (21076185).
文摘Equilibrium sorption amount, desorption diffusion coefficients and sorption diffusion coefficients of CO2 in poly(l-lactic acid) (PLLA) films at elevated pressures were determined by the gravimetric method, in which the Fick's diffusion model was applied to analyze both the desorption and sorption processes. The equilibrium sorption amount of CO2 in PLLA increased with lowering temperature and elevating pressure at the temperature range from 40 to 60 ℃ and pressure from 10^4 to 2x10^4 kPa. Desorption diffusion coefficients were greatly influenced by the equilibrium sorption amount, and they were in the same order of magnitude as the sorption diffusion coefficients. The scan electron microscope (SEM) photos demonstrated that there was no foaming phenomenon of the PLLA film during desorption and sorption processes. The XRD spectra implied that the crystalline degree of PLLA film decreased after CO2 processing. It was concluded that PLLA polymer could be well swollen and plasticized by supercritical CO2.
基金The work was financially supported by the National Natural Science Foundation of China(No.20634040).
文摘Chloro(5,10,15,20-tetraphenyl-porphyrinato)-aluminum/tetraethylammonium bromide(Et4NBr)in combination with bulky Lewis acid was used for the copolymerization of CO_2 and cyclohexene oxide(CHO).Bulky Lewis acid having substituents at the ortho positions of the phenolate ligands,like methylaluminum bis(2,6-di-tert-butyl-4-methylphenolate), significantly shortened the induction period and raised the catalytic activity,the corresponding turnover frequency reached 44.9 h^(-1)in 9 h,which was 23.8% higher than th...
基金supported by the Natural Science Education Foundation of Gansu province(No.07-08-12)the"QingLan"Talent Engineering Funds of Tianshui Normal University.
文摘A mild and facile way was used to prepare poly(nitriloethylenenitrilovinylene)-grafted multi-walled carbon nanotubes(MWCNTs-g-PNENV)nanocomposites via the"grafting to"method.The MWCNTs-g-PNENV nanocomposites are well dispersible in polar solvents such as water,tetrahydrofuran and ethanol.Chemical structure of the resulting product was characterized by Fourier transform infrared(FTIR)spectroscopy,transmission electron microscopy(TEM)and thermal gravimetric analysis(TGA).FTIR showed that the"grafting to"process belonged to covalent attachment mechanisms.TEM observations indicated that the MWCNTs were coated with a uniform PNENV layer,and the MWCNTs existed as a hard backbone.TGA data also showed that the PNENV shell was successfully grafted to the side wall of MWCNTs.