The pursuit of incorporating eco-friendly reinforcing agents in polymer composites has accentuated the exploration of various natural biomass-derived materials.The burgeoning environmental crisis spurred by the discha...The pursuit of incorporating eco-friendly reinforcing agents in polymer composites has accentuated the exploration of various natural biomass-derived materials.The burgeoning environmental crisis spurred by the discharge of synthetic dyes into wastewater has catalyzed the search for effective and sustainable treatment technologies.Among the various sorbent materials explored,biochar,being renewable,has gained prominence due to its excellent adsorption properties and environmental sustainability.It has also emerged as a focal point for its potential to replace other conventional reinforcing agents,viz.,fumed silica,aluminum oxide,treated clays,etc.This study introduces a novel class of polymer nanocomposites comprising of lignin-based biochar particles and poly(ester amide urethane)matrix via a feasible method.The structural evaluation of these nanocomposites was accomplished using Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy,and powder X-ray diffraction.The polymer nanocomposites exhibited superior mechanical properties with an increment in tensile strength factor by 45%in comparison to its pristine matrix,along with an excellent toughness value of 90.22 MJm^(−3)at a low loading amount of only 1 wt%.The composites showed excellent improvement in thermal properties with a sharp rise in the glass transition temperature(Tg)value from−28.15℃to 84℃,while also championing sustainability through inherent biodegradability attributes.Beyond their structural prowess,these polymer nanocomposites demonstrated excellent potential as adsorbents,displaying efficient removal of malachite green and tartrazine dyes from aqueous systems with a removal efficiency of 87.25%and 73.98%,respectively.The kinetics study revealed the pseudo second order model to be the precision tool to assess the dye removal study.Complementing this,the Langmuir adsorption isotherm provided a framework to assess the sorption features of the polymer nanocomposites.Overall,these renewable biochar integrated polymer matrices boast remarkable recovery capabilities up to seven cycles of usage with an excellent dye recovery percentage of 95.21%for the last cycle,thereby defining sustainability as well as economic feasibility.展开更多
A novel AB3-type monomer was prepared from gallic acid and DL-2-aminobutyric acid, and used for the synthesis of the biocompatible hyperbranched poly(ester-amide)s by self-polycondensation. The polymers were character...A novel AB3-type monomer was prepared from gallic acid and DL-2-aminobutyric acid, and used for the synthesis of the biocompatible hyperbranched poly(ester-amide)s by self-polycondensation. The polymers were characterized via FTIR and NMR spectroscopy and thermal analysis, and the average degree of branching of the polymers was estimated to be 0.75. The polymers with abundant acetyl end groups were found to be amorphous with lower intrinsic viscosity, better thermal stability and excellent solubility.展开更多
AB2-type-prepolymerized monomer was rapidly (2 h) prepared at room temperature (25 ℃) using commercially available maleic anhydride (MA) and diethanolamine (DEA) as raw materials. By employing toluene-p-sulfo...AB2-type-prepolymerized monomer was rapidly (2 h) prepared at room temperature (25 ℃) using commercially available maleic anhydride (MA) and diethanolamine (DEA) as raw materials. By employing toluene-p-sulfonic acid as a catalyzer, a series of hyperbranched poly(amide-ester) (HBPAE) were successfully synthesized from prepared AB2 monomer by solution condensation polymerization through "one-step process" or "pseudo one-step process" (using pentaerythritol as a center core). The processes were carried out at high temperature of 120 ℃ for 6 h in air atmosphere (inert protection free) with reduced pressure distillation (0.08--0.096 MPa). The results of FT-IR, UV-Vis, TGA, and intrinsic viscosity testing by Ubbelodhe viscometer showed that the prepared HBPAEs possess three-dimensional configuration with unsaturated conjugate structure, large numbers of branches and numerous terminal hydroxyl groups. These result in their low viscosity, high solubility and thermal stability.展开更多
A series of thermoplastic polyester elastomer (TPEE) and thermoplastic poly(ester amide)s elastomer (TPEaE)copolymers were obtained by depolymerizing PET (polyethylene terephthalate) by which the waste PET canbe effic...A series of thermoplastic polyester elastomer (TPEE) and thermoplastic poly(ester amide)s elastomer (TPEaE)copolymers were obtained by depolymerizing PET (polyethylene terephthalate) by which the waste PET canbe efficiently recovered and recycled into value-added products from a practical and economical point of view.The structure of TPEE and TPEaE was identified using nuclear magnetic resonance (NMR) and Fourier transforminfrared spectroscopy (FT-IR). Differential scanning calorimetry (DSC) data showed that the melting temperature(Tm) decreased with the amide content increased. The glass transition temperature (Tg) was increased as introducingthe amide group, and the formation of amide-ester and amide-amide hydrogen bonds increased the intermolecularchain force. The intrinsic viscosity (η) showed the tendency of increment from TPEE (0.53 dL g^(−1)) to TPEaE-5%(0.72 dL g^(−1)) due to the reinforcement of hydrogen bond and chain entanglement.展开更多
A series of new optically active aromatic poly(ester amide)s containing a chiral group in the side chain prepared from the p-toluenesulfonic acid salt of o,o'-bis(leucyl)-hexanediol (TS-+LHD+TS-) and p-phthaloyl c...A series of new optically active aromatic poly(ester amide)s containing a chiral group in the side chain prepared from the p-toluenesulfonic acid salt of o,o'-bis(leucyl)-hexanediol (TS-+LHD+TS-) and p-phthaloyl chloride and styrene-2,5- dicarbonyl chloride styrene have been synthesized by interfacial polymerization. The structure of the monomer is elucidated by FT-IR and elemental analysis. The thermal properties of the polymers were studied by DSC and TGA. The chiroptical properties of the above polymer have also been studied by circular dichroism (CD) spectroscopy. Results indicated that these polymers form helical structures.展开更多
It has been proved that introducing isocyanurate into polymer chains could improve the flame retardancy of polymers.We describe in this work the synthesis and the thermal property study of three thermoplastic polyisoc...It has been proved that introducing isocyanurate into polymer chains could improve the flame retardancy of polymers.We describe in this work the synthesis and the thermal property study of three thermoplastic polyisocyanurates,which are polyisocyanuratoamide(PICA-6),polyisocyanurato(ester amide)(PICEA-6)and polyisocyanurato(urea ester)(PICUE-6).These polymers show similar and improved thermal stability with the existence of isocyanurate rings.PICA-6 is more crystalizable than the rest two and the melting temperature is found to be around 240℃ but it still crystalizes slowly.For PICEA-6 and PICUE-6,only glass transition can be observed on the DSC traces.The glass transition temperature follows the order of PICA-6>PICEA-6>PICUE-6(101.9,77.9 and 28.7℃,respectively).展开更多
A novel lactic acid-based cross-linked poly(ester-amide) (LCPEA) was synthesized. The gel fraction of the LCPEA could be modulated by the reaction conditions and it affected the mechanical and thermal properties o...A novel lactic acid-based cross-linked poly(ester-amide) (LCPEA) was synthesized. The gel fraction of the LCPEA could be modulated by the reaction conditions and it affected the mechanical and thermal properties of the LCPEA. The tensile strength, elastic modulus and bend strength of the LCPEA of 65% gel fraction were 4.65, 136.55 and 39.63 MPa, respectively. The thermal decomposition temperature (50 wt%) of the LCPEA was around 410℃.展开更多
A new method of surface chemical modification of nano-SiO2 is proposed in this paper. In the presence of catalyst, the active hydroxyl groups on the surface of nano-SiO2 reacted with AB2-type monomer (N, N-dihydroxye...A new method of surface chemical modification of nano-SiO2 is proposed in this paper. In the presence of catalyst, the active hydroxyl groups on the surface of nano-SiO2 reacted with AB2-type monomer (N, N-dihydroxyethyl-3-amino methyl propionate) by one-step polycondensation. And the product's Fourer transform infrared (FTIR) graphs and transmission electron microscopy(TEM) images proved that hyperbranched poly (amine-ester) was grafted on nano-SiO2 surface successfully. Results show that the modified nano-SiO2 exhibits excellent dispersion and stability in some solvents such as alcohol and chloroform.展开更多
Epoxy resin based Unsaturated poly(ester-amide) resins (UPEAs) can be prepared by many methods but here these were prepared by reported method [1]. These UPEAs were then treated with acrylotl chloride to afford acryla...Epoxy resin based Unsaturated poly(ester-amide) resins (UPEAs) can be prepared by many methods but here these were prepared by reported method [1]. These UPEAs were then treated with acrylotl chloride to afford acrylated UPEAs resin (i.e. AUPEAs). Interacting blends of equal proportional AUPEAs and vinyl ester epoxy (VE) resin were prepared. APEAs and AUPEAs were characterized by elemental analysis, molecular weight determined by vapour pressure osmometer and by IR spectral study and by thermogravimetry. The curing of interacting blends was monitored on differential scanning calorimeter (DSC). Based on DSC data in situ glass reinforced composites of the resultant blends have been prepared and characterized for mechanical, electrical and chemical properties. Unreinforced blends were characterized by thermogravimetry (TGA).展开更多
Two novel heterocyclic diamine monomers: 1,2-dihydro-2-(4-aminophenyl)-4-[4-(4-aminophenoxy)phenyl] (2H)phthalazin-1-one and 1,2-dihydro-2-(4-aminophenyl)-4-[4-(4-aminophenoxy)-3,5-dimethylphenyl](2H)phthalazin-1-one ...Two novel heterocyclic diamine monomers: 1,2-dihydro-2-(4-aminophenyl)-4-[4-(4-aminophenoxy)phenyl] (2H)phthalazin-1-one and 1,2-dihydro-2-(4-aminophenyl)-4-[4-(4-aminophenoxy)-3,5-dimethylphenyl](2H)phthalazin-1-one were successfully synthesized from readily available heterocyclic bisphenol-like monomers in two steps in high yield. A series of novel poly(aryl ether amide)s containing the phthalazinone moiety were successfully prepared by the direct polymerization of the novel diamines and aromatic dicarboxylic acids using triphenyl phosphite and pyridine as condensing agents.展开更多
The direct polymerization of an unsymmetrical kink non-coplanar heterocyclic diamine (1) with various aromatic bis(trimellitimide)s (2a-e) using triphenyl phosphite and pyridine as condensing agents could generate a s...The direct polymerization of an unsymmetrical kink non-coplanar heterocyclic diamine (1) with various aromatic bis(trimellitimide)s (2a-e) using triphenyl phosphite and pyridine as condensing agents could generate a series of new aromatic poly(amide imide)s (3a-e) containing the kink non-coplanar phthalazinone heterocyclic units in the polymer main chains with inherent viscosities of 0.58-0.66 dL/g. The polymers are readily soluble in a variety of solvents such as N,N- dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidinone, pyridine and m-cresol and can be cast to form flexible and tough films. The glass transition temperatures of polymers (Tg) are in the range of 301-327°C, and the temperatures for 5% weight loss in nitrogen are in the range of 498-521 'C.展开更多
A novel aromatic diacid, 4, 4'-bis[2-(4-carboxyphenyl)phthalazin-1-one-4-yl]-bisphenyl ether III, containing bisphthalazinone and ether linkages was prepared from nucleophilic substitution of p-chlorobenzonitril...A novel aromatic diacid, 4, 4'-bis[2-(4-carboxyphenyl)phthalazin-1-one-4-yl]-bisphenyl ether III, containing bisphthalazinone and ether linkages was prepared from nucleophilic substitution of p-chlorobenzonitrile with the bisphenol-like monomer I, followed by alkaline hydrolysis of the intermediate dinitrile II. A series of poly(ether amide)s containing bisphthala- zinone and ether linkages derived from diacid III and aromatic diamines were synthesized by one-step solution condensation polymerization using triphenyl phosphite and pyridine as condensing agents. Moreover, the properties of poly(ether amide)s including thermal stability, solubility and crystallinity were also studied.展开更多
The synthesis and characterization of a series of novel poly(aryl amide imide)s based on o diphenyltrimellitic anhydride are described.The poly(aryl amide imide)s having inherent viscosities of 0.39-1.43dL/g in N m...The synthesis and characterization of a series of novel poly(aryl amide imide)s based on o diphenyltrimellitic anhydride are described.The poly(aryl amide imide)s having inherent viscosities of 0.39-1.43dL/g in N methyl 2 pyrrolidinone at 30℃,were prepared by polymerization with aromatic diamines in N,N-dimethylacetamide and subsequent chemical imidization.All the polymers were amorphous,readily soluble in aprotic polar solvents such as DMAC,NMP,DMF,DMSO,and m cresol,and could be cast to form flexible and tough films.The glass trsanition temperatures were in the range of 284-336℃,and the temperatures for 5% weight loss in nitrogen were above 468℃.展开更多
Six new optically active poly(amide-imide)s (5a-f) were synthesized through the direct polycondensation reaction of N,N′-(4,4′- diphthaloyl)-bis-L-leucine (3) with six hydantoin derivatives (4a-f). Tripben...Six new optically active poly(amide-imide)s (5a-f) were synthesized through the direct polycondensation reaction of N,N′-(4,4′- diphthaloyl)-bis-L-leucine (3) with six hydantoin derivatives (4a-f). Tripbenyl phosphite (TPP)/pyridine in the presence of calcium chloride (CaCl2) and N-methyl-2-pyrrolidone (NMP) were successfully applied for direct polycondensation. The polycondensation reactions produce a series of new poly(amide-imide)s (5a-f) in high yields, and inherent viscosity between 0.42 and 0,55 dL/g. The resulting poly(amide-imide)s (5a-f) were characterized by elemental analysis, viscosity measurements, thermal gravimetric analysis (TGA and DTG), solubility test and FT-IR spectroscopy.展开更多
A series of aliphatic biodegradable poly(ether-ester)s based on poly(butylene succinate)(PBS)as hard segment and poly(tetramethylene oxide)(PTMO,M_n=1 000 g/mol) as soft segment were synthesized.The composit...A series of aliphatic biodegradable poly(ether-ester)s based on poly(butylene succinate)(PBS)as hard segment and poly(tetramethylene oxide)(PTMO,M_n=1 000 g/mol) as soft segment were synthesized.The composition dependence of thermal behavior,morphology and mechanical properties was investigated by differential scanning calorimetry(DSC),atomic force microscopy(AFM),and tensile testing.The crystallization temperature(T_c) and melting temperature(T_m) of the PBS block within poly(ether-ester)s decrease steadily at first,but decrease sharply with PTMO content above 50 wt%.Two crystallization peaks were detected for PTMO in PBSPTMO60 sample,suggesting the occurrence of fractionated crystallization.The crystallization enthalpies(△H_c) and melting enthalpies(△H_m) of PBS block decrease at first,then increase as PTMO content increases further.AFM has demonstrated that phase-separated morphology transforms from a phase of continuous hard matrix to one of continuous soft matrix containing isolated hard domain as PTMO content is increased.Finally,the results of tensile testing show that the poly(ether-ester)s present the behavior of plastics when PTMO content is below 40 wt%,and of thermoplastic elastomers with PTMO content above 50 wt%.By varying the composition of copolymer,the aliphatic poly(ether-ester)s plastics,or especially biodegradable aliphatic poly(ether-ester)s thermoplastic elastomers can be obtained.展开更多
Colorectal cancer is a common cancer worldwide.Traditional chemotherapeutic drugs often face limitations such as poor aqueous solubility and high systemic toxicity,which can lead to adverse side effects and limited th...Colorectal cancer is a common cancer worldwide.Traditional chemotherapeutic drugs often face limitations such as poor aqueous solubility and high systemic toxicity,which can lead to adverse side effects and limited therapeutic efficacy.In this study,a library of one kind of biodegradable and biocompatible polymer,leucine based-poly(ester amide)s(Leu-PEAs)was developed and utilized as drug carrier.The structure of Leu-PEAs can be tuned to alter their physicochemical properties,enhancing drug loading capacity and delivery efficiency.Leu-PEAs can self-assemble into nanoparticles by nanoprecipitation and load paclitaxel(PTX)with the diameter of~108 nm and PTX loading capacity of~8.5%.PTX-loaded Leu-PEAs nanoparticles(PTX@Leu-PEAs)demonstrated significant inhibition of CT26 cell growth in vitro.In vivo,these nanoparticles exhibited prolonged tumor accumulation and antitumor effects,with no observed toxicity to normal organs.Furthermore,blank Leu-PEAs nanoparticles also showed antitumor effects in vitro and in vivo,which may be attributed to the activation of the mammalian target of rapamycin(m TOR)pathway by leucine.Consequently,this biocompatible Leu-PEAs nano-drug delivery system shows potential as a promising strategy for colorectal cancer treatment,warranting further investigation.展开更多
Facile and rapid polycondensation reactions of N,N'-(pyromellitoyl)-bis-L-leucine diacid chloride 1 with eight different derivatives of hydantoin compounds 2a-h were developed by using a domestic microwave oven in...Facile and rapid polycondensation reactions of N,N'-(pyromellitoyl)-bis-L-leucine diacid chloride 1 with eight different derivatives of hydantoin compounds 2a-h were developed by using a domestic microwave oven in the presence of a small amount of polar organic medium such as o-cresol. The polycondensation reactions proceeded rapidly, compared with the conventional solution polycondensation, and was completed within 7-10 min, producing a series of novel optically active poly(amide-imide)s 3a-h with high yield and inherent viscosity of 0.35-0.65 dL/g. All of the above polymers were fully characterized by FT-IR, elemental analyses, inherent viscosity (η inh ), solubility test and specific rotation. Some structural characterization and physical properties of these optically active poly(amide-imide)s are reported.展开更多
The evolution of high-frequency communication has accentuated the significance of controlling dielectric properties in polymer media.Traditionally,it has been theorized that rigid molecular chains lead to lower dielec...The evolution of high-frequency communication has accentuated the significance of controlling dielectric properties in polymer media.Traditionally,it has been theorized that rigid molecular chains lead to lower dielectric loss.However,the validity of this proposition at high frequencies remains uncertain.To scrutinize the correlation between chain flexibility and dielectric properties,we synthesized six poly(ester imide)s(PEIs)with systematically varied molecular chain flexibilities by modifying the ester's substitution on the aromatic ring.The introduction of ester bonds bestowed all PEI films with a low dielectric dissipation factor(D_(f)),ranging from 0.0021 to 0.0038 at 10 GHz in dry conditions.The dry D_(f)displayed a pattern consistent with volume polarizability(P/V).Unexpectedly,PI-mmm-T,featu ring the most flexible molecular chain,exhibited the lowest dielectric loss under both dry(0.0021@10 GHz)and hygroscopic(0.0029@10 GHz)conditions.Furthermore,the observed increase in D_(f)after humidity absorption suggests that the high dielectric loss of PEI in applications may be attributed to its hygroscopic nature.Molecular simulations and characterization of the aggregation structure revealed that the smaller cavities within flexible molecular chains,after close stacking,impede the entry of water molecules.Despite sacrificing high-temperature resistance,the precursor exhibited enhanced solubility properties and could be processed into high-quality films.Our research unveils new insights into the relationship between flexibility and highfrequency dielectric loss,offering innovative perspectives on synthesizing aromatic polymers with exceptional dielectric properties.展开更多
Highly branched poly(β-amino ester)s(HPAEs)have emerged as a safe and efficient type of non-viral gene delivery vectors.However,the presence of inactive terminal secondary amine groups compromises their gene transfec...Highly branched poly(β-amino ester)s(HPAEs)have emerged as a safe and efficient type of non-viral gene delivery vectors.However,the presence of inactive terminal secondary amine groups compromises their gene transfection capability.In this study,HPAEs with similar topological structures and chemical compositions but varying numbers of terminal secondary 4-amino-1-butanol(S4)and secondary/tertiary 3-morpholinopropylamine(MPA)groups were synthesized.The results demonstrate that an increased number of secondary/tertiary MPA groups in-situ significantly enhances the DNA binding capability of HPAEs,leading to the formation of smaller HPAE/DNA polyplexes with higher zeta potential,ultimately resulting in superior gene transfection efficiency in bladder epithelial cells.This study establishes a sim-ple yet effective strategy to maximize the gene transfection potency of HPAEs by converting the inactive terminal groups in-situ without the need for complex modifications to their topological structure and chemical composition.展开更多
文摘The pursuit of incorporating eco-friendly reinforcing agents in polymer composites has accentuated the exploration of various natural biomass-derived materials.The burgeoning environmental crisis spurred by the discharge of synthetic dyes into wastewater has catalyzed the search for effective and sustainable treatment technologies.Among the various sorbent materials explored,biochar,being renewable,has gained prominence due to its excellent adsorption properties and environmental sustainability.It has also emerged as a focal point for its potential to replace other conventional reinforcing agents,viz.,fumed silica,aluminum oxide,treated clays,etc.This study introduces a novel class of polymer nanocomposites comprising of lignin-based biochar particles and poly(ester amide urethane)matrix via a feasible method.The structural evaluation of these nanocomposites was accomplished using Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy,and powder X-ray diffraction.The polymer nanocomposites exhibited superior mechanical properties with an increment in tensile strength factor by 45%in comparison to its pristine matrix,along with an excellent toughness value of 90.22 MJm^(−3)at a low loading amount of only 1 wt%.The composites showed excellent improvement in thermal properties with a sharp rise in the glass transition temperature(Tg)value from−28.15℃to 84℃,while also championing sustainability through inherent biodegradability attributes.Beyond their structural prowess,these polymer nanocomposites demonstrated excellent potential as adsorbents,displaying efficient removal of malachite green and tartrazine dyes from aqueous systems with a removal efficiency of 87.25%and 73.98%,respectively.The kinetics study revealed the pseudo second order model to be the precision tool to assess the dye removal study.Complementing this,the Langmuir adsorption isotherm provided a framework to assess the sorption features of the polymer nanocomposites.Overall,these renewable biochar integrated polymer matrices boast remarkable recovery capabilities up to seven cycles of usage with an excellent dye recovery percentage of 95.21%for the last cycle,thereby defining sustainability as well as economic feasibility.
文摘A novel AB3-type monomer was prepared from gallic acid and DL-2-aminobutyric acid, and used for the synthesis of the biocompatible hyperbranched poly(ester-amide)s by self-polycondensation. The polymers were characterized via FTIR and NMR spectroscopy and thermal analysis, and the average degree of branching of the polymers was estimated to be 0.75. The polymers with abundant acetyl end groups were found to be amorphous with lower intrinsic viscosity, better thermal stability and excellent solubility.
基金the National Science and Technology Support Project of "the Eleventh Five-year Plan"(2006BAE03B06-03)the New Century Talents Support Program of Chinese Education Department (NCET-04-0614)
文摘AB2-type-prepolymerized monomer was rapidly (2 h) prepared at room temperature (25 ℃) using commercially available maleic anhydride (MA) and diethanolamine (DEA) as raw materials. By employing toluene-p-sulfonic acid as a catalyzer, a series of hyperbranched poly(amide-ester) (HBPAE) were successfully synthesized from prepared AB2 monomer by solution condensation polymerization through "one-step process" or "pseudo one-step process" (using pentaerythritol as a center core). The processes were carried out at high temperature of 120 ℃ for 6 h in air atmosphere (inert protection free) with reduced pressure distillation (0.08--0.096 MPa). The results of FT-IR, UV-Vis, TGA, and intrinsic viscosity testing by Ubbelodhe viscometer showed that the prepared HBPAEs possess three-dimensional configuration with unsaturated conjugate structure, large numbers of branches and numerous terminal hydroxyl groups. These result in their low viscosity, high solubility and thermal stability.
基金This research was funded by the Ministry of Science and Technology of Taiwan,Grant No.MOST 109-2634-F-027-001.
文摘A series of thermoplastic polyester elastomer (TPEE) and thermoplastic poly(ester amide)s elastomer (TPEaE)copolymers were obtained by depolymerizing PET (polyethylene terephthalate) by which the waste PET canbe efficiently recovered and recycled into value-added products from a practical and economical point of view.The structure of TPEE and TPEaE was identified using nuclear magnetic resonance (NMR) and Fourier transforminfrared spectroscopy (FT-IR). Differential scanning calorimetry (DSC) data showed that the melting temperature(Tm) decreased with the amide content increased. The glass transition temperature (Tg) was increased as introducingthe amide group, and the formation of amide-ester and amide-amide hydrogen bonds increased the intermolecularchain force. The intrinsic viscosity (η) showed the tendency of increment from TPEE (0.53 dL g^(−1)) to TPEaE-5%(0.72 dL g^(−1)) due to the reinforcement of hydrogen bond and chain entanglement.
基金This work was supported by the National Natural Science Foundation of China (No. 20134010,20274003).
文摘A series of new optically active aromatic poly(ester amide)s containing a chiral group in the side chain prepared from the p-toluenesulfonic acid salt of o,o'-bis(leucyl)-hexanediol (TS-+LHD+TS-) and p-phthaloyl chloride and styrene-2,5- dicarbonyl chloride styrene have been synthesized by interfacial polymerization. The structure of the monomer is elucidated by FT-IR and elemental analysis. The thermal properties of the polymers were studied by DSC and TGA. The chiroptical properties of the above polymer have also been studied by circular dichroism (CD) spectroscopy. Results indicated that these polymers form helical structures.
基金the financial supports to this work by the National Natural Science Foundation of China(Nos.21404040,21734004,51573061)the Fund of the Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province,Guangzhou 510640,China(South China University of Technology,No.2019B030301003)the Opening Project Funding of Key Laboratory of Polymer Processing Engineering(South China University of Technology),Ministry of Education,China(No.KFKT1702).
文摘It has been proved that introducing isocyanurate into polymer chains could improve the flame retardancy of polymers.We describe in this work the synthesis and the thermal property study of three thermoplastic polyisocyanurates,which are polyisocyanuratoamide(PICA-6),polyisocyanurato(ester amide)(PICEA-6)and polyisocyanurato(urea ester)(PICUE-6).These polymers show similar and improved thermal stability with the existence of isocyanurate rings.PICA-6 is more crystalizable than the rest two and the melting temperature is found to be around 240℃ but it still crystalizes slowly.For PICEA-6 and PICUE-6,only glass transition can be observed on the DSC traces.The glass transition temperature follows the order of PICA-6>PICEA-6>PICUE-6(101.9,77.9 and 28.7℃,respectively).
文摘A novel lactic acid-based cross-linked poly(ester-amide) (LCPEA) was synthesized. The gel fraction of the LCPEA could be modulated by the reaction conditions and it affected the mechanical and thermal properties of the LCPEA. The tensile strength, elastic modulus and bend strength of the LCPEA of 65% gel fraction were 4.65, 136.55 and 39.63 MPa, respectively. The thermal decomposition temperature (50 wt%) of the LCPEA was around 410℃.
基金Sponsored by the Ministerial Level Advanced Research Foundation (120701BQ0126)
文摘A new method of surface chemical modification of nano-SiO2 is proposed in this paper. In the presence of catalyst, the active hydroxyl groups on the surface of nano-SiO2 reacted with AB2-type monomer (N, N-dihydroxyethyl-3-amino methyl propionate) by one-step polycondensation. And the product's Fourer transform infrared (FTIR) graphs and transmission electron microscopy(TEM) images proved that hyperbranched poly (amine-ester) was grafted on nano-SiO2 surface successfully. Results show that the modified nano-SiO2 exhibits excellent dispersion and stability in some solvents such as alcohol and chloroform.
文摘Epoxy resin based Unsaturated poly(ester-amide) resins (UPEAs) can be prepared by many methods but here these were prepared by reported method [1]. These UPEAs were then treated with acrylotl chloride to afford acrylated UPEAs resin (i.e. AUPEAs). Interacting blends of equal proportional AUPEAs and vinyl ester epoxy (VE) resin were prepared. APEAs and AUPEAs were characterized by elemental analysis, molecular weight determined by vapour pressure osmometer and by IR spectral study and by thermogravimetry. The curing of interacting blends was monitored on differential scanning calorimeter (DSC). Based on DSC data in situ glass reinforced composites of the resultant blends have been prepared and characterized for mechanical, electrical and chemical properties. Unreinforced blends were characterized by thermogravimetry (TGA).
文摘Two novel heterocyclic diamine monomers: 1,2-dihydro-2-(4-aminophenyl)-4-[4-(4-aminophenoxy)phenyl] (2H)phthalazin-1-one and 1,2-dihydro-2-(4-aminophenyl)-4-[4-(4-aminophenoxy)-3,5-dimethylphenyl](2H)phthalazin-1-one were successfully synthesized from readily available heterocyclic bisphenol-like monomers in two steps in high yield. A series of novel poly(aryl ether amide)s containing the phthalazinone moiety were successfully prepared by the direct polymerization of the novel diamines and aromatic dicarboxylic acids using triphenyl phosphite and pyridine as condensing agents.
基金This work was supported by the Key Natural Science Foundation of Fujian Province (E0320003).
文摘The direct polymerization of an unsymmetrical kink non-coplanar heterocyclic diamine (1) with various aromatic bis(trimellitimide)s (2a-e) using triphenyl phosphite and pyridine as condensing agents could generate a series of new aromatic poly(amide imide)s (3a-e) containing the kink non-coplanar phthalazinone heterocyclic units in the polymer main chains with inherent viscosities of 0.58-0.66 dL/g. The polymers are readily soluble in a variety of solvents such as N,N- dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidinone, pyridine and m-cresol and can be cast to form flexible and tough films. The glass transition temperatures of polymers (Tg) are in the range of 301-327°C, and the temperatures for 5% weight loss in nitrogen are in the range of 498-521 'C.
文摘A novel aromatic diacid, 4, 4'-bis[2-(4-carboxyphenyl)phthalazin-1-one-4-yl]-bisphenyl ether III, containing bisphthalazinone and ether linkages was prepared from nucleophilic substitution of p-chlorobenzonitrile with the bisphenol-like monomer I, followed by alkaline hydrolysis of the intermediate dinitrile II. A series of poly(ether amide)s containing bisphthala- zinone and ether linkages derived from diacid III and aromatic diamines were synthesized by one-step solution condensation polymerization using triphenyl phosphite and pyridine as condensing agents. Moreover, the properties of poly(ether amide)s including thermal stability, solubility and crystallinity were also studied.
文摘The synthesis and characterization of a series of novel poly(aryl amide imide)s based on o diphenyltrimellitic anhydride are described.The poly(aryl amide imide)s having inherent viscosities of 0.39-1.43dL/g in N methyl 2 pyrrolidinone at 30℃,were prepared by polymerization with aromatic diamines in N,N-dimethylacetamide and subsequent chemical imidization.All the polymers were amorphous,readily soluble in aprotic polar solvents such as DMAC,NMP,DMF,DMSO,and m cresol,and could be cast to form flexible and tough films.The glass trsanition temperatures were in the range of 284-336℃,and the temperatures for 5% weight loss in nitrogen were above 468℃.
文摘Six new optically active poly(amide-imide)s (5a-f) were synthesized through the direct polycondensation reaction of N,N′-(4,4′- diphthaloyl)-bis-L-leucine (3) with six hydantoin derivatives (4a-f). Tripbenyl phosphite (TPP)/pyridine in the presence of calcium chloride (CaCl2) and N-methyl-2-pyrrolidone (NMP) were successfully applied for direct polycondensation. The polycondensation reactions produce a series of new poly(amide-imide)s (5a-f) in high yields, and inherent viscosity between 0.42 and 0,55 dL/g. The resulting poly(amide-imide)s (5a-f) were characterized by elemental analysis, viscosity measurements, thermal gravimetric analysis (TGA and DTG), solubility test and FT-IR spectroscopy.
基金Funded by the National Natural Science Foundation of China(No.50873071)the Teaching and Research Award Program for Outstanding Young Professors in Higher Education Institute,MOE,China
文摘A series of aliphatic biodegradable poly(ether-ester)s based on poly(butylene succinate)(PBS)as hard segment and poly(tetramethylene oxide)(PTMO,M_n=1 000 g/mol) as soft segment were synthesized.The composition dependence of thermal behavior,morphology and mechanical properties was investigated by differential scanning calorimetry(DSC),atomic force microscopy(AFM),and tensile testing.The crystallization temperature(T_c) and melting temperature(T_m) of the PBS block within poly(ether-ester)s decrease steadily at first,but decrease sharply with PTMO content above 50 wt%.Two crystallization peaks were detected for PTMO in PBSPTMO60 sample,suggesting the occurrence of fractionated crystallization.The crystallization enthalpies(△H_c) and melting enthalpies(△H_m) of PBS block decrease at first,then increase as PTMO content increases further.AFM has demonstrated that phase-separated morphology transforms from a phase of continuous hard matrix to one of continuous soft matrix containing isolated hard domain as PTMO content is increased.Finally,the results of tensile testing show that the poly(ether-ester)s present the behavior of plastics when PTMO content is below 40 wt%,and of thermoplastic elastomers with PTMO content above 50 wt%.By varying the composition of copolymer,the aliphatic poly(ether-ester)s plastics,or especially biodegradable aliphatic poly(ether-ester)s thermoplastic elastomers can be obtained.
基金support of the National Natural Science Foundation of China(Nos.52173150,52073313)the Guangzhou Science and Technology Program City-University Joint Funding Project(No.2023A03J0001)the Shenzhen Science and Technology Program(No.KCXFZ 202002011010232)。
文摘Colorectal cancer is a common cancer worldwide.Traditional chemotherapeutic drugs often face limitations such as poor aqueous solubility and high systemic toxicity,which can lead to adverse side effects and limited therapeutic efficacy.In this study,a library of one kind of biodegradable and biocompatible polymer,leucine based-poly(ester amide)s(Leu-PEAs)was developed and utilized as drug carrier.The structure of Leu-PEAs can be tuned to alter their physicochemical properties,enhancing drug loading capacity and delivery efficiency.Leu-PEAs can self-assemble into nanoparticles by nanoprecipitation and load paclitaxel(PTX)with the diameter of~108 nm and PTX loading capacity of~8.5%.PTX-loaded Leu-PEAs nanoparticles(PTX@Leu-PEAs)demonstrated significant inhibition of CT26 cell growth in vitro.In vivo,these nanoparticles exhibited prolonged tumor accumulation and antitumor effects,with no observed toxicity to normal organs.Furthermore,blank Leu-PEAs nanoparticles also showed antitumor effects in vitro and in vivo,which may be attributed to the activation of the mammalian target of rapamycin(m TOR)pathway by leucine.Consequently,this biocompatible Leu-PEAs nano-drug delivery system shows potential as a promising strategy for colorectal cancer treatment,warranting further investigation.
基金This project was supported by the Research Affairs Division of Arak University.
文摘Facile and rapid polycondensation reactions of N,N'-(pyromellitoyl)-bis-L-leucine diacid chloride 1 with eight different derivatives of hydantoin compounds 2a-h were developed by using a domestic microwave oven in the presence of a small amount of polar organic medium such as o-cresol. The polycondensation reactions proceeded rapidly, compared with the conventional solution polycondensation, and was completed within 7-10 min, producing a series of novel optically active poly(amide-imide)s 3a-h with high yield and inherent viscosity of 0.35-0.65 dL/g. All of the above polymers were fully characterized by FT-IR, elemental analyses, inherent viscosity (η inh ), solubility test and specific rotation. Some structural characterization and physical properties of these optically active poly(amide-imide)s are reported.
基金financially supported by the National Natural Science Foundation of China(No.52303010)Key-Area Research and Development Program of Guangdong province(No.2019B010941001)+2 种基金Key Technology of Liquid Crystal Polymer Material for 5G/6G High Frequency Communication(No.JSGGZD20220822095201003)Songshan Lake Materials Laboratory(No.2021SLABFK01)the Guangdong Basic and Applied Basic Research Foundation(No.2021A1515110143)。
文摘The evolution of high-frequency communication has accentuated the significance of controlling dielectric properties in polymer media.Traditionally,it has been theorized that rigid molecular chains lead to lower dielectric loss.However,the validity of this proposition at high frequencies remains uncertain.To scrutinize the correlation between chain flexibility and dielectric properties,we synthesized six poly(ester imide)s(PEIs)with systematically varied molecular chain flexibilities by modifying the ester's substitution on the aromatic ring.The introduction of ester bonds bestowed all PEI films with a low dielectric dissipation factor(D_(f)),ranging from 0.0021 to 0.0038 at 10 GHz in dry conditions.The dry D_(f)displayed a pattern consistent with volume polarizability(P/V).Unexpectedly,PI-mmm-T,featu ring the most flexible molecular chain,exhibited the lowest dielectric loss under both dry(0.0021@10 GHz)and hygroscopic(0.0029@10 GHz)conditions.Furthermore,the observed increase in D_(f)after humidity absorption suggests that the high dielectric loss of PEI in applications may be attributed to its hygroscopic nature.Molecular simulations and characterization of the aggregation structure revealed that the smaller cavities within flexible molecular chains,after close stacking,impede the entry of water molecules.Despite sacrificing high-temperature resistance,the precursor exhibited enhanced solubility properties and could be processed into high-quality films.Our research unveils new insights into the relationship between flexibility and highfrequency dielectric loss,offering innovative perspectives on synthesizing aromatic polymers with exceptional dielectric properties.
基金funded by the National Natural Science Foundation of China(NSFC,No.51903202)the Key R&D Program of Shaanxi Province(No.2020GXLH-Y-016)+2 种基金the Natural Science Foundation of Shaanxi Province(No.2020JM-055)the Fundamental Re-search Funds for the Central Universities(No.xtr042019020)the Young Talents Support Plan of Xi’an Jiaotong University(No.HG6J002).
文摘Highly branched poly(β-amino ester)s(HPAEs)have emerged as a safe and efficient type of non-viral gene delivery vectors.However,the presence of inactive terminal secondary amine groups compromises their gene transfection capability.In this study,HPAEs with similar topological structures and chemical compositions but varying numbers of terminal secondary 4-amino-1-butanol(S4)and secondary/tertiary 3-morpholinopropylamine(MPA)groups were synthesized.The results demonstrate that an increased number of secondary/tertiary MPA groups in-situ significantly enhances the DNA binding capability of HPAEs,leading to the formation of smaller HPAE/DNA polyplexes with higher zeta potential,ultimately resulting in superior gene transfection efficiency in bladder epithelial cells.This study establishes a sim-ple yet effective strategy to maximize the gene transfection potency of HPAEs by converting the inactive terminal groups in-situ without the need for complex modifications to their topological structure and chemical composition.