Confined thin film melt polymerization (CTFMP) of naphthalene chloride/hydroquinone (NCMQ, 1/1, molar)mixtures at polymerization temperatures (T_p) below ca. 300℃ resulted in relatively thick, elongated crystals. Pol...Confined thin film melt polymerization (CTFMP) of naphthalene chloride/hydroquinone (NCMQ, 1/1, molar)mixtures at polymerization temperatures (T_p) below ca. 300℃ resulted in relatively thick, elongated crystals. Polymerizationof NC/HQ above 300℃ between glass yielded well-formed lamellar crystals ca. 100 A thick. Phase Ⅰ and Ⅱ [001] EDpatterns were obtained for all T_p, the relative amount of phase Ⅰ increasing with T_p. Polymerization of naphthalenedicarboxylic acid/hydroquinione diacetate 1/1 mixtures at high T_p also yielded lamellar crystals that "curled up" off of thesubstrate. When the high temperature CTFMP polymerization was conducted between mica, aggregates of lamellae on-edgedeveloped but epitaxial growth did not occur. Epitaxial growth of lamellae between mica could be obtained, however, byconfined thin film solution polymerization, with both of the latter samples yielding apparently related ED patterns from adifferent unit cell than phase Ⅰ or Ⅱ. Fiber patterns, obtained from sheared samples, indicated considerably greater crystaldisorder than in the nascent crystals. Refinement of the phase Ⅰ unit cell parameters, based on the [001] and [01 1] EDpatterns, with modeling based on Cerius^2, suggests a monoclinic phase Ⅰ unit cell with a = 7.76, b = 5.71, c = 14.99 A, α = γ= 90°, β= 99.7°, ρ = 1.47 g/cm^3, space group P12_1/al.展开更多
Poly(butylene 2,6-naphthalate)(PBN)is a crystallizable linear polyester containing a rigid naphthalene unit and flexible methylene spacer in the chemical repeat unit.Polymeric materials made of PBN exhibit excellent a...Poly(butylene 2,6-naphthalate)(PBN)is a crystallizable linear polyester containing a rigid naphthalene unit and flexible methylene spacer in the chemical repeat unit.Polymeric materials made of PBN exhibit excellent anti-abrasion and low friction properties,superior chemical resista nee,and outstanding gas barrier characteristics.Many of the properties rely on the presence of crystals and the formatio n of a semicrystalline morphology.To develop specific crystal structures and morphologies during cooling the melt,precise information about the melt-crystallization process is required.This review article summarizes the current knowledge about the temperature-controlled crystal polymorphism of PBN.At rather low supercooling of the melt,with decreasi ng crystal I izatio n temperature,0'-and a-crystals grow directly from the melt and organize in largely different spherulitic superstructures.Formation of a-crystals at high supercooling may also proceed via intermediate formation of a transient monotropic liquid crystalline structure,then yielding a non-spherulitic semicrystalline morphology.Crystallization of PBN is rather fast since its suppression requires cooling the melt at a rate higher than 6000 K-s_1.For this reason,investigation of the two-step crystallization process at low temperatu res requires application of sophisticated experimental tools.These in elude temperatureresolved X-ray scattering techniques using fast detectors and synchrotron-based X-rays and fast scanning chip calorimetry.Fast scanning chip calorimetry allows freezi ng the transie nt liquid-crystalline structure before its con version into a-crystals,by fast cooling to below its glass transition temperature.Subsequent an alysis using polarized-light optical microscopy reveals its texture and X-ray scatteri ng con firms the smectic arrangement of the mesogens.The combination of a large variety of experimental techniques allows obtaining a complete picture about crystallization of PBN in the entire range of melt-supercoolings down to the glass transition,including quantitative data about the crystallization kinetics,semicrystalline morphologies at the micrometer length scale,as well as nanoscale X-ray structure information.展开更多
基金This research was supported, in part, by grants from the National Science Foundation (NSF-DMR International Program 96-16255 (F. R. and P. H. G.) and NSF-DMR Polymer Program 93-12823 and 96-16255 (J. Y., G. S., J. L. and P. H. G.) and Grant Agency of the
文摘Confined thin film melt polymerization (CTFMP) of naphthalene chloride/hydroquinone (NCMQ, 1/1, molar)mixtures at polymerization temperatures (T_p) below ca. 300℃ resulted in relatively thick, elongated crystals. Polymerizationof NC/HQ above 300℃ between glass yielded well-formed lamellar crystals ca. 100 A thick. Phase Ⅰ and Ⅱ [001] EDpatterns were obtained for all T_p, the relative amount of phase Ⅰ increasing with T_p. Polymerization of naphthalenedicarboxylic acid/hydroquinione diacetate 1/1 mixtures at high T_p also yielded lamellar crystals that "curled up" off of thesubstrate. When the high temperature CTFMP polymerization was conducted between mica, aggregates of lamellae on-edgedeveloped but epitaxial growth did not occur. Epitaxial growth of lamellae between mica could be obtained, however, byconfined thin film solution polymerization, with both of the latter samples yielding apparently related ED patterns from adifferent unit cell than phase Ⅰ or Ⅱ. Fiber patterns, obtained from sheared samples, indicated considerably greater crystaldisorder than in the nascent crystals. Refinement of the phase Ⅰ unit cell parameters, based on the [001] and [01 1] EDpatterns, with modeling based on Cerius^2, suggests a monoclinic phase Ⅰ unit cell with a = 7.76, b = 5.71, c = 14.99 A, α = γ= 90°, β= 99.7°, ρ = 1.47 g/cm^3, space group P12_1/al.
文摘Poly(butylene 2,6-naphthalate)(PBN)is a crystallizable linear polyester containing a rigid naphthalene unit and flexible methylene spacer in the chemical repeat unit.Polymeric materials made of PBN exhibit excellent anti-abrasion and low friction properties,superior chemical resista nee,and outstanding gas barrier characteristics.Many of the properties rely on the presence of crystals and the formatio n of a semicrystalline morphology.To develop specific crystal structures and morphologies during cooling the melt,precise information about the melt-crystallization process is required.This review article summarizes the current knowledge about the temperature-controlled crystal polymorphism of PBN.At rather low supercooling of the melt,with decreasi ng crystal I izatio n temperature,0'-and a-crystals grow directly from the melt and organize in largely different spherulitic superstructures.Formation of a-crystals at high supercooling may also proceed via intermediate formation of a transient monotropic liquid crystalline structure,then yielding a non-spherulitic semicrystalline morphology.Crystallization of PBN is rather fast since its suppression requires cooling the melt at a rate higher than 6000 K-s_1.For this reason,investigation of the two-step crystallization process at low temperatu res requires application of sophisticated experimental tools.These in elude temperatureresolved X-ray scattering techniques using fast detectors and synchrotron-based X-rays and fast scanning chip calorimetry.Fast scanning chip calorimetry allows freezi ng the transie nt liquid-crystalline structure before its con version into a-crystals,by fast cooling to below its glass transition temperature.Subsequent an alysis using polarized-light optical microscopy reveals its texture and X-ray scatteri ng con firms the smectic arrangement of the mesogens.The combination of a large variety of experimental techniques allows obtaining a complete picture about crystallization of PBN in the entire range of melt-supercoolings down to the glass transition,including quantitative data about the crystallization kinetics,semicrystalline morphologies at the micrometer length scale,as well as nanoscale X-ray structure information.