The purpose of this research study was to investigate the properties of polyurethane coatings based on lignin nano-particles.For this purpose,the prepared coatings were applied to pine wood surfaces and weathered arti...The purpose of this research study was to investigate the properties of polyurethane coatings based on lignin nano-particles.For this purpose,the prepared coatings were applied to pine wood surfaces and weathered artificially.Subsequently,color and gloss of the coatings were measured before and after the weathering test.Field emission scanning electron microscopy(FE-SEM)micrographs prepared from the coatings showed that the average size of nano-particles in the polyurethane substrate was approximately 500 nm.Nuclear magnetic resonance(13C-NMR)spectroscopy showed that strong urethane bonds were formed in the nano-lignin-based polyurethane.Differential calorimetric analysis(DSC)test revealed that the glass-transition temperature(Tg)of lignin nanoparticles modified with diethylenetriamine(DETA)was 112.8℃ and Tg of lignin nano-particles modified with ethylenediamine(EDA)was 102.5℃,which is lower than the Tg of un-modified lignin(114.6℃)and lignin modified with DETA(126.8℃)and lignin modified with EDA(131.3℃).The coatings modified with lignin nano-particles had a greater change in gloss.The lignin nano-particles in the modified coating are trapping hydroxyl radicals which reduces photoactivity and yellowing of the polyurethane by about 3 times compared to unmodified polyurethane coatings.After weathering test,the nano-lignin-based coating had a rougher surface with a lower contact angle(0.78°)compared to the unmodified polyurethane coating(0.85°).展开更多
Polyols are groups of organic compounds which contain carbon and are randomly linked to other atoms,especially carbon-carbon and carbon-hydrogen.These compounds are mainly used as reactants to make other polymers.Amon...Polyols are groups of organic compounds which contain carbon and are randomly linked to other atoms,especially carbon-carbon and carbon-hydrogen.These compounds are mainly used as reactants to make other polymers.Among biopolymers,lignin is regarded as the base of a new polymer in polyol construction.The present study aimed to investigate the effects of amine type(diethylenetriamine and ethylenediamine)on the modification of lignin-based polyols,so as to provide an alternative to petroleum polyols and,in turn,increase functional groups and reduce their harm to humans’health and the environment.To this aim,first,lignin was extracted from raw liquor.Next,the extracted lignin was reacted with diethylenetriamine(DETA)and ethylenediamine(EDA).Finally,the Mannich method was used for the reaction between amine lignin and propylene carbonate.The results of the Fourier Transform Infrared(FTIR)spectroscopy analysis showed that modification with DETA led to more structural change in lignin and peak 1100 indicates the presence of C–O bond related to urethane bonds in modified lignin.Moreover,adding propylene carbonate to aminated lignin did not result in much change in the results of the FTIR analysis.Additionally,urethane bonds can be seen in the results of GPC at 400℃–500℃.Furthermore,a slight decrease in thermal stability was observed in lignin modified with amine and propylene carbonate,compared to the raw lignin sample.展开更多
The completely degradable nanocomposites comprised of poly(propylene carbonate)(PPC) and organo-modified rectorite (OREC) were prepared by direct melt intercalation. The structure and mechanical properties of PPC/OREC...The completely degradable nanocomposites comprised of poly(propylene carbonate)(PPC) and organo-modified rectorite (OREC) were prepared by direct melt intercalation. The structure and mechanical properties of PPC/OREC nanocomposites were investigated. The wide-angle X-ray diffraction (WAXD) results show that the galleries distance of OREC is increased after PPC and OREC melt intercalation, which indicates that PPC molecular chain has intercalated into the layers of OREC. The PPC/OREC nanocomposites with lower OREC content show an increase in thermal decomposition temperature compared with pure PPC. The tensile strength and impact strength of PPC/OREC nanocomposites are improved. When the mass fraction of OREC is 4%, the tensile strength and impact strength of the PPC/OREC nanocomposite increase by 22.86% and 48.58% respectively, compared with pure PPC.展开更多
Polylactide(PLA),methyl methacrylate-butadiene-styrene copolymer(MBS),and poly(propylene carbonate)polyurethane(PPCU)were blended and subjected to blown film process.The rheological,mechanical,morphological,thermal,an...Polylactide(PLA),methyl methacrylate-butadiene-styrene copolymer(MBS),and poly(propylene carbonate)polyurethane(PPCU)were blended and subjected to blown film process.The rheological,mechanical,morphological,thermal,and crystalline properties of the PLA/MBS/PPCU ternary blends and the mechanical properties of the resulting films were studied.Results of mechanical test showed that PPCU and MBS could synergistically toughen PLA.The impact strength of 50/10/40 PLA/MBS/PPCU blend(74.7 k J/m^2)was about 7.5 times higher than that of the neat PLA(10.8 k J/m^2),and the elongation at break of 50/10/40 PLA/MBS/PPCU blend(276.5%)was higher by about 45 times that of PLA(6.2%).The tear strength of PLA/MBS/PPCU films was 20 k N/m higher than that of PLA,and the elongation at break(MD/TD)of 50/10/40 PLA/MBS/PPCU films was 271.1%/222.3%,whereas that of PLA was only 2.7%/3.0%.POM observations displayed that the density of spherulite nucleation increased and the size of crystalline particles decreased with the addition of MBS.With increasing PPCU content from 5%to 20%,the density of spherulite nucleation increased and the size of crystalline particles decreased continuously,but the nucleation density of spherulites was slightly lowered with increasing PPCU content from 30%to 40%.The PLA/MBS/PPCU films exhibited excellent mechanical properties,which expanded the application range of these biodegradable films.展开更多
Poly(propylene carbonate) (PPC) was blended with polylactide (PLA) and poly(1,2-propylene glycol adipate) (PPA) using a twin screw extruder. Then the PPC/PLA/PPA films were prepared using the blown film tech...Poly(propylene carbonate) (PPC) was blended with polylactide (PLA) and poly(1,2-propylene glycol adipate) (PPA) using a twin screw extruder. Then the PPC/PLA/PPA films were prepared using the blown film technique. DMA results showed that PPA could act as a plasticizer and improve the miscibility between PPC and PLA. Crystal morphology displayed that blending PLA with the amorphous PPC led to a decrease of the spherulite size of PLA. The results of mechanical tests indicated that PPC-rich films showed high elongation at break and PLA-rich films showed high tear strength and good optical properties. The content of PPC and PLA significantly affected the physical properties of the films. With increasing PPC content, the melt strengths of the PPC/PLA/PPA films were enhanced. These findings contributed to the biodegradable materials application for designing and manufacturing polymer packaging.展开更多
Background Peripheral nerve regeneration across large gaps is clinically challenging. Scaffold design plays a pivotal role in nerve tissue engineering. Recently, nanofibrous scaffolds have proven a suitable environmen...Background Peripheral nerve regeneration across large gaps is clinically challenging. Scaffold design plays a pivotal role in nerve tissue engineering. Recently, nanofibrous scaffolds have proven a suitable environment for cell attachment and proliferation due to similarities of their physical properties to natural extracellular matrix. Poly(propylene carbonate) (PPC) nanofibrous scaffolds have been investigated for vascular tissue engineering. However, no reports exist of PPC nanofibrous scaffolds for nerve tissue engineering. This study aimed to evaluate the potential role of aligned and random PPC nanofibrous scaffolds as substrates for peripheral nerve tissue and cells in nerve tissue engineering. Methods Aligned and random PPC nanofibrous scaffolds were fabricated by electrospinning and their chemical characterization were carried out using scanning electron microscopy (SEM). Dorsal root ganglia (DRG) from Sprague-Dawley rats were cultured on the nanofibrous substrates for 7 days. Neurite outgrowth and Schwann-ceU migration from DRG were observed and quantified using immunocytochemistry and SEM. Schwann cells derived from rat sciatic nerves were cultured in electrospun PPC scaffold-extract fluid for 24, 48, 72 hours and 7 days. The viability of Schwann cells was evaluated by 3-[4,5-dimethyl(thiazol-2-yl)-2,5-diphenyl] tetrazolium bromide (M]-F) assay. Results The diameter of aligned and random fibers ranged between 800 nm and 1200 nm, and the thickness of the films was approximately 10-20 IJm. Quantification of aligned fiber films revealed approximately 90% alignment of all fibers along the longitudinal axis. However, with random fiber films, the alignment of fibers was random through all angle bins. Rat DRG explants were grown on PPC nanofiber films for up to 1 week. On the aligned fiber films, the majority of neurite outgrowth and Schwann cell migration from the DRG extended unidirectionally, parallel to the aligned fibers. However, on the random fiber films, neurite outgrowth and Schwann cell migration were randomly distributed. A comparison of cumulative neurite lengths from cultured DRGs indicated that neurites grew faster on aligned PPC films ((2537.6±987.3) μm) than randomly-distributed fibers ((493.5±50.6) μm). The average distance of Schwann cell migration on aligned PPC nanofibrous films ((2803.5±943.6) μm) were significantly greater than those on random fibers ((625.3±47.8) pm). The viability of Schwann cells cultured in aligned PPC scaffold extract fluid was not significantly different from that in the plain DMEM/F12 medium at all time points after seeding. Conclusions The aligned PPC nanofibrous film, but not the randomly-oriented fibers, significantly enhanced peripheral nerve regeneration in vitro, indicating the substantial role of topographical cues in stimulating endogenous nerve repair mechanisms. Aligned PPC nanofibrous scaffolds may be a promising biomaterial for nerve regeneration.展开更多
Poly(propylene carbonate) (PPC) was melt blended in a batch mixer with poly(butylene carbonate) (PBC) in an effort to improve the toughness of the PPC without compromising its biodegradability and biocompatibi...Poly(propylene carbonate) (PPC) was melt blended in a batch mixer with poly(butylene carbonate) (PBC) in an effort to improve the toughness of the PPC without compromising its biodegradability and biocompatibility. DMA results showed that the PPC/PBC blends were an immiscible two-phase system. With the increase in PBC content, the PPC/PBC blends showed decreased tensile strength, however, the elongation at break was increased to 230% for the 50/50 PPC/PBC blend. From the tensile strength experiments, the Pukanszky model gave credit to the modest interfacial adhesion between PPC and PBC, although PPC/PBC was immscible. The impact strength increased significantly which indicated the toughening effects of the PBC on PPC. SEM examination showed that cavitation and shear yielding were the major toughening mechanisms in the blends subjected the impact tests. TGA measurements showed that the thermal stability of PPC decreased with the incorporation of PBC. Rheological investigation demonstrated that the addition of PBC reduced the value of storage modulus, loss modulus and complex viscosity of the PPC/PBC blends to some extent. Moreover, the addition of PBC was found to increase the processability of PPC in extrusion. The introduction of PBC provided an efficient and novel toughened method to extend the application area of PPC.展开更多
文摘The purpose of this research study was to investigate the properties of polyurethane coatings based on lignin nano-particles.For this purpose,the prepared coatings were applied to pine wood surfaces and weathered artificially.Subsequently,color and gloss of the coatings were measured before and after the weathering test.Field emission scanning electron microscopy(FE-SEM)micrographs prepared from the coatings showed that the average size of nano-particles in the polyurethane substrate was approximately 500 nm.Nuclear magnetic resonance(13C-NMR)spectroscopy showed that strong urethane bonds were formed in the nano-lignin-based polyurethane.Differential calorimetric analysis(DSC)test revealed that the glass-transition temperature(Tg)of lignin nanoparticles modified with diethylenetriamine(DETA)was 112.8℃ and Tg of lignin nano-particles modified with ethylenediamine(EDA)was 102.5℃,which is lower than the Tg of un-modified lignin(114.6℃)and lignin modified with DETA(126.8℃)and lignin modified with EDA(131.3℃).The coatings modified with lignin nano-particles had a greater change in gloss.The lignin nano-particles in the modified coating are trapping hydroxyl radicals which reduces photoactivity and yellowing of the polyurethane by about 3 times compared to unmodified polyurethane coatings.After weathering test,the nano-lignin-based coating had a rougher surface with a lower contact angle(0.78°)compared to the unmodified polyurethane coating(0.85°).
文摘Polyols are groups of organic compounds which contain carbon and are randomly linked to other atoms,especially carbon-carbon and carbon-hydrogen.These compounds are mainly used as reactants to make other polymers.Among biopolymers,lignin is regarded as the base of a new polymer in polyol construction.The present study aimed to investigate the effects of amine type(diethylenetriamine and ethylenediamine)on the modification of lignin-based polyols,so as to provide an alternative to petroleum polyols and,in turn,increase functional groups and reduce their harm to humans’health and the environment.To this aim,first,lignin was extracted from raw liquor.Next,the extracted lignin was reacted with diethylenetriamine(DETA)and ethylenediamine(EDA).Finally,the Mannich method was used for the reaction between amine lignin and propylene carbonate.The results of the Fourier Transform Infrared(FTIR)spectroscopy analysis showed that modification with DETA led to more structural change in lignin and peak 1100 indicates the presence of C–O bond related to urethane bonds in modified lignin.Moreover,adding propylene carbonate to aminated lignin did not result in much change in the results of the FTIR analysis.Additionally,urethane bonds can be seen in the results of GPC at 400℃–500℃.Furthermore,a slight decrease in thermal stability was observed in lignin modified with amine and propylene carbonate,compared to the raw lignin sample.
文摘The completely degradable nanocomposites comprised of poly(propylene carbonate)(PPC) and organo-modified rectorite (OREC) were prepared by direct melt intercalation. The structure and mechanical properties of PPC/OREC nanocomposites were investigated. The wide-angle X-ray diffraction (WAXD) results show that the galleries distance of OREC is increased after PPC and OREC melt intercalation, which indicates that PPC molecular chain has intercalated into the layers of OREC. The PPC/OREC nanocomposites with lower OREC content show an increase in thermal decomposition temperature compared with pure PPC. The tensile strength and impact strength of PPC/OREC nanocomposites are improved. When the mass fraction of OREC is 4%, the tensile strength and impact strength of the PPC/OREC nanocomposite increase by 22.86% and 48.58% respectively, compared with pure PPC.
基金financially supported by the National Science Foundation of Zhejiang Province of China (No. LQY19B040001)the fund of Science and Technology Bureau of Jilin Province of China (No. 20170204012SF)+1 种基金the Program of Changchun Science and Technology Bureau (No. 16CX23)National Key Research and Development Program of China (No. 2016YFC0501402-5)
文摘Polylactide(PLA),methyl methacrylate-butadiene-styrene copolymer(MBS),and poly(propylene carbonate)polyurethane(PPCU)were blended and subjected to blown film process.The rheological,mechanical,morphological,thermal,and crystalline properties of the PLA/MBS/PPCU ternary blends and the mechanical properties of the resulting films were studied.Results of mechanical test showed that PPCU and MBS could synergistically toughen PLA.The impact strength of 50/10/40 PLA/MBS/PPCU blend(74.7 k J/m^2)was about 7.5 times higher than that of the neat PLA(10.8 k J/m^2),and the elongation at break of 50/10/40 PLA/MBS/PPCU blend(276.5%)was higher by about 45 times that of PLA(6.2%).The tear strength of PLA/MBS/PPCU films was 20 k N/m higher than that of PLA,and the elongation at break(MD/TD)of 50/10/40 PLA/MBS/PPCU films was 271.1%/222.3%,whereas that of PLA was only 2.7%/3.0%.POM observations displayed that the density of spherulite nucleation increased and the size of crystalline particles decreased with the addition of MBS.With increasing PPCU content from 5%to 20%,the density of spherulite nucleation increased and the size of crystalline particles decreased continuously,but the nucleation density of spherulites was slightly lowered with increasing PPCU content from 30%to 40%.The PLA/MBS/PPCU films exhibited excellent mechanical properties,which expanded the application range of these biodegradable films.
基金financially supported by the fund of Science&Technology Bureau of Jilin Province of China(No.20130305028NY)Chinese Science Academy(Changchun Branch)(No.2014SYHZ0019)+1 种基金the National High Technology Research and Development Program of China(863 Program)(No.2012AA062904)the National Natural Science Foundation of China(No.51021003)
文摘Poly(propylene carbonate) (PPC) was blended with polylactide (PLA) and poly(1,2-propylene glycol adipate) (PPA) using a twin screw extruder. Then the PPC/PLA/PPA films were prepared using the blown film technique. DMA results showed that PPA could act as a plasticizer and improve the miscibility between PPC and PLA. Crystal morphology displayed that blending PLA with the amorphous PPC led to a decrease of the spherulite size of PLA. The results of mechanical tests indicated that PPC-rich films showed high elongation at break and PLA-rich films showed high tear strength and good optical properties. The content of PPC and PLA significantly affected the physical properties of the films. With increasing PPC content, the melt strengths of the PPC/PLA/PPA films were enhanced. These findings contributed to the biodegradable materials application for designing and manufacturing polymer packaging.
基金This study was supported by grants from the Hi-Tech Research and Development Program of China ("863" Program, No. 2009AA03Z312), Beijing Natural Science Foundation (The oriented micro-structure, double-aligned nerve-derived extracellular matrix scaffolds promote peripheral nerve long defects regeneration).
文摘Background Peripheral nerve regeneration across large gaps is clinically challenging. Scaffold design plays a pivotal role in nerve tissue engineering. Recently, nanofibrous scaffolds have proven a suitable environment for cell attachment and proliferation due to similarities of their physical properties to natural extracellular matrix. Poly(propylene carbonate) (PPC) nanofibrous scaffolds have been investigated for vascular tissue engineering. However, no reports exist of PPC nanofibrous scaffolds for nerve tissue engineering. This study aimed to evaluate the potential role of aligned and random PPC nanofibrous scaffolds as substrates for peripheral nerve tissue and cells in nerve tissue engineering. Methods Aligned and random PPC nanofibrous scaffolds were fabricated by electrospinning and their chemical characterization were carried out using scanning electron microscopy (SEM). Dorsal root ganglia (DRG) from Sprague-Dawley rats were cultured on the nanofibrous substrates for 7 days. Neurite outgrowth and Schwann-ceU migration from DRG were observed and quantified using immunocytochemistry and SEM. Schwann cells derived from rat sciatic nerves were cultured in electrospun PPC scaffold-extract fluid for 24, 48, 72 hours and 7 days. The viability of Schwann cells was evaluated by 3-[4,5-dimethyl(thiazol-2-yl)-2,5-diphenyl] tetrazolium bromide (M]-F) assay. Results The diameter of aligned and random fibers ranged between 800 nm and 1200 nm, and the thickness of the films was approximately 10-20 IJm. Quantification of aligned fiber films revealed approximately 90% alignment of all fibers along the longitudinal axis. However, with random fiber films, the alignment of fibers was random through all angle bins. Rat DRG explants were grown on PPC nanofiber films for up to 1 week. On the aligned fiber films, the majority of neurite outgrowth and Schwann cell migration from the DRG extended unidirectionally, parallel to the aligned fibers. However, on the random fiber films, neurite outgrowth and Schwann cell migration were randomly distributed. A comparison of cumulative neurite lengths from cultured DRGs indicated that neurites grew faster on aligned PPC films ((2537.6±987.3) μm) than randomly-distributed fibers ((493.5±50.6) μm). The average distance of Schwann cell migration on aligned PPC nanofibrous films ((2803.5±943.6) μm) were significantly greater than those on random fibers ((625.3±47.8) pm). The viability of Schwann cells cultured in aligned PPC scaffold extract fluid was not significantly different from that in the plain DMEM/F12 medium at all time points after seeding. Conclusions The aligned PPC nanofibrous film, but not the randomly-oriented fibers, significantly enhanced peripheral nerve regeneration in vitro, indicating the substantial role of topographical cues in stimulating endogenous nerve repair mechanisms. Aligned PPC nanofibrous scaffolds may be a promising biomaterial for nerve regeneration.
基金financially supported by the fund of Science&Technology Bureau of Jilin Province of China(No.20126023)the National High Technology Research and Development Program of China(863 Program)(No.2012AA062904)the National Natural Science Foundation of China(No.51021003)
文摘Poly(propylene carbonate) (PPC) was melt blended in a batch mixer with poly(butylene carbonate) (PBC) in an effort to improve the toughness of the PPC without compromising its biodegradability and biocompatibility. DMA results showed that the PPC/PBC blends were an immiscible two-phase system. With the increase in PBC content, the PPC/PBC blends showed decreased tensile strength, however, the elongation at break was increased to 230% for the 50/50 PPC/PBC blend. From the tensile strength experiments, the Pukanszky model gave credit to the modest interfacial adhesion between PPC and PBC, although PPC/PBC was immscible. The impact strength increased significantly which indicated the toughening effects of the PBC on PPC. SEM examination showed that cavitation and shear yielding were the major toughening mechanisms in the blends subjected the impact tests. TGA measurements showed that the thermal stability of PPC decreased with the incorporation of PBC. Rheological investigation demonstrated that the addition of PBC reduced the value of storage modulus, loss modulus and complex viscosity of the PPC/PBC blends to some extent. Moreover, the addition of PBC was found to increase the processability of PPC in extrusion. The introduction of PBC provided an efficient and novel toughened method to extend the application area of PPC.