Pheniramine maleate (PA), an antihistamine, was determined by Differential Pulse Stripping voltammetry using nano polypyrrole (Ppy) and nano poly(3,4-ethylenedioxythiophene) (PEDOT) modified glassy carbon electrodes. ...Pheniramine maleate (PA), an antihistamine, was determined by Differential Pulse Stripping voltammetry using nano polypyrrole (Ppy) and nano poly(3,4-ethylenedioxythiophene) (PEDOT) modified glassy carbon electrodes. The cyclic voltammetric behavior of pheniramine was studied in aqueous acidic, neutral and alkaline conditions. One well-defined oxidation peak was observed in the cyclic voltammograms at all pHs. The influence of pH, scan rate and concentration revealed irreversible electron transfer and the oxidation was diffusion controlled adsorption. The SEM analysis confirmed good accumulation of PA on the electrode surface. A systematic study of influence of various experimental parameters that affect the stripping voltammetric response was carried out and the maximum peak current conditions were arrived at. Calibration was made under maximum peak current conditions. The range of study was 0.05 to 0.4 μg/mL on Ppy/GCE and 0.025 to 0.4μg/mL on PEDOT/GCE and the lower limit of determination were 0.035μg/mL on Ppy/GCE and 0.016μg/mL on PEDOT/GCE. The suitability of the method for the determination of PA in pharmaceutical preparations and urine samples was also ascertained.展开更多
Composites of Maghnite-H, a Montmorillonite sheet silicate clay, exchanged with protons, and Poly(3,4-ethylenedioxythiophene) (PEDOT) were prepared by in situ chemical polymerization of the 3,4-ethylenedioxythiophene,...Composites of Maghnite-H, a Montmorillonite sheet silicate clay, exchanged with protons, and Poly(3,4-ethylenedioxythiophene) (PEDOT) were prepared by in situ chemical polymerization of the 3,4-ethylenedioxythiophene, without the use of solvent or oxidant. The effect of changing monomer/clay ratio was studied and the resultant composite structures were characterized by Inferred spectroscopy, 27Al and 13CSolid-State NMR spectroscopy, scanning electron microscopy and powder X-ray diffraction. All analyses are consistent with a structure were the polymer is (partially) intercalated into the clay structure, which in favourable cases lead to exfoliation. The presence of the clay in the polymer leads to a desired increase in thermal stability as witnessed by thermogravimetry.展开更多
Aqueous zinc-ion devices are considered promising candidates for energy storage due to their high safety,low cost and relatively high energy density.However,the dendrite growth,hydrogen evolution reaction(HER)and corr...Aqueous zinc-ion devices are considered promising candidates for energy storage due to their high safety,low cost and relatively high energy density.However,the dendrite growth,hydrogen evolution reaction(HER)and corrosion of the zinc anode significantly limit the development of Zn-ion devices.Here,an inexpensive poly(3,4-ethylenedioxythiophene)(PEDOT)protective layer was constructed in situ on the Zn surface using electropolymerization to suppress dendrite growth and side reactions,thereby enhancing the reversibility of Zn.Experimental and theoretical calculations revealed that this hydrophilic protective layer promotes the desolvation process of hydrated Zn^(2+)and facilitates the transport of zinc ions,thus improving the thermodynamic and kinetic properties of Zn^(2+)deposition and inhibiting interfacial side reactions.Consequently,the optimized PEDOT@Zn symmetric battery exhibited a cycling stability exceeding 1250 h at 0.5 mA·cm^(-2)and 0.25 mAh·cm^(-2),with a significantly reduced overpotential(from 91.8 to 35 mV).With the assistance of the PEDOT protective layer,the PEDOT@Zn//Cu battery maintained approximately 99.5%Coulombic efficiency after 450 cycles.Ex-situ scanning electron microscopy(SEM)and in situ optical microscopy characterizations further confirmed that the PEDOT protective layer can effectively suppress the growth of zinc dendrites.Additionally,the Zn-ion capacitors assembled by the PEDOT@Zn and activated carbon also demonstrated outstanding cycling stability.展开更多
An arachidic acid/poly (3, 4-ethylene dioxythiophene) (AA/PEDOT) multilayer Langmuir-Blodgett (LB) film was prepared by a modified LB film method. The theories were utilized to explain the effects between HCl mo...An arachidic acid/poly (3, 4-ethylene dioxythiophene) (AA/PEDOT) multilayer Langmuir-Blodgett (LB) film was prepared by a modified LB film method. The theories were utilized to explain the effects between HCl molecule and LB film. The gas sensitivity mechanism of poly (3, 4-ethylene dioxythiophene) (PEDOT) multilayer film can be explained by the charge transfer between p system of PEDOT and oxidization HCl system. The gas sensitivity of PEDOT LB film deposited interdigital electrode to HCl was tested. The results showed that film thickness, treating temperature, deposition speed had different influence on film gas sensitivity. The AA/PEDOT film deposited device exhibited nonlinear behavior to HCl gas at lower concentration (20-60 ppm) and linear response behavior at higher gas concentration was observed. The time of the compound LB film of the AA/PEDOT responding to the 30 ppm HCl gas is about 20 seconds, which is far quicker than the time of the film to the PEDOTPRESS film(about 80 seconds). It is not higher film press to better film. When the film press attains 45 mNs/m, the sensitivity of the AA/PEDOT film on the contrary descends.展开更多
Exfoliation of bulk graphitic carbon nitride(g‐C3N4)into two‐dimensional(2D)nanosheets is one of the effective strategies to improve its photocatalytic properties so that the 2D g‐C3N4 nanosheets(CN)have larger spe...Exfoliation of bulk graphitic carbon nitride(g‐C3N4)into two‐dimensional(2D)nanosheets is one of the effective strategies to improve its photocatalytic properties so that the 2D g‐C3N4 nanosheets(CN)have larger specific surface areas and more reaction sites.In addition,poly‐o‐phenylenediamine(PoPD)can improve the electrical conductivity and photocatalytic activity of semiconductor materials.Here,the novel efficient composite PoPD/AgCl/g‐C3N4 nanosheets was first synthesized by a precipitation reaction and the photoinitiated polymerization approach.The obtained photocatalysts have larger specific surface areas and could achieve better visible‐light response.However,silver chloride(AgCl)is susceptible to agglomeration and photocorrosion.The PoPD/AgCl/CN composite exhibits an extremely high photocurrent density,which is three times that of CN.Obviously enhanced photocatalytic activities of PoPD/AgCl/g‐C3N4 are revealed through the photodegradation of tetracycline.The stability of PoPD/AgCl/CN is demonstrated based on four cycles of experiments that reveal that the degradation rate only decreases slightly.Furthermore,.O2^-and h+are the main active species,which are confirmed through a trapping experiment and ESR spin‐trap technique.Therefore,the prepared PoPD/AgCl/CN can be considered as a stable photocatalyst,in which PoPD is added as a charge carrier and acts a photosensitive protective layer on the surface of the AgCl particles.This provides a new technology for preparing highly stable composite photocatalysts that can effectively deal with environmental issues.展开更多
4(3H)-Quinazolinones have been synthesized from poly(ethylene glycol) (PEG) supported aza-Wittig reaction. 2-Dialkylamino- 4(3H)-quinazolinones 6 were synthesized efficiently by reaction of secondary amine wit...4(3H)-Quinazolinones have been synthesized from poly(ethylene glycol) (PEG) supported aza-Wittig reaction. 2-Dialkylamino- 4(3H)-quinazolinones 6 were synthesized efficiently by reaction of secondary amine with PEG-supported carbodiimides 4, which were obtained from aza-Wittig reaction of PEG-supported iminophosphoranes 3 with isocyanates.展开更多
文摘Pheniramine maleate (PA), an antihistamine, was determined by Differential Pulse Stripping voltammetry using nano polypyrrole (Ppy) and nano poly(3,4-ethylenedioxythiophene) (PEDOT) modified glassy carbon electrodes. The cyclic voltammetric behavior of pheniramine was studied in aqueous acidic, neutral and alkaline conditions. One well-defined oxidation peak was observed in the cyclic voltammograms at all pHs. The influence of pH, scan rate and concentration revealed irreversible electron transfer and the oxidation was diffusion controlled adsorption. The SEM analysis confirmed good accumulation of PA on the electrode surface. A systematic study of influence of various experimental parameters that affect the stripping voltammetric response was carried out and the maximum peak current conditions were arrived at. Calibration was made under maximum peak current conditions. The range of study was 0.05 to 0.4 μg/mL on Ppy/GCE and 0.025 to 0.4μg/mL on PEDOT/GCE and the lower limit of determination were 0.035μg/mL on Ppy/GCE and 0.016μg/mL on PEDOT/GCE. The suitability of the method for the determination of PA in pharmaceutical preparations and urine samples was also ascertained.
文摘Composites of Maghnite-H, a Montmorillonite sheet silicate clay, exchanged with protons, and Poly(3,4-ethylenedioxythiophene) (PEDOT) were prepared by in situ chemical polymerization of the 3,4-ethylenedioxythiophene, without the use of solvent or oxidant. The effect of changing monomer/clay ratio was studied and the resultant composite structures were characterized by Inferred spectroscopy, 27Al and 13CSolid-State NMR spectroscopy, scanning electron microscopy and powder X-ray diffraction. All analyses are consistent with a structure were the polymer is (partially) intercalated into the clay structure, which in favourable cases lead to exfoliation. The presence of the clay in the polymer leads to a desired increase in thermal stability as witnessed by thermogravimetry.
基金the research fund of the National Natural Science Foundation of China(Nos.21902084,52222203 and 52073008)the Natural Science Foundation of Hubei Province(No.2022CFB354)the 111 Project of Hubei Province(No.2018-19-1)for financial support.
文摘Aqueous zinc-ion devices are considered promising candidates for energy storage due to their high safety,low cost and relatively high energy density.However,the dendrite growth,hydrogen evolution reaction(HER)and corrosion of the zinc anode significantly limit the development of Zn-ion devices.Here,an inexpensive poly(3,4-ethylenedioxythiophene)(PEDOT)protective layer was constructed in situ on the Zn surface using electropolymerization to suppress dendrite growth and side reactions,thereby enhancing the reversibility of Zn.Experimental and theoretical calculations revealed that this hydrophilic protective layer promotes the desolvation process of hydrated Zn^(2+)and facilitates the transport of zinc ions,thus improving the thermodynamic and kinetic properties of Zn^(2+)deposition and inhibiting interfacial side reactions.Consequently,the optimized PEDOT@Zn symmetric battery exhibited a cycling stability exceeding 1250 h at 0.5 mA·cm^(-2)and 0.25 mAh·cm^(-2),with a significantly reduced overpotential(from 91.8 to 35 mV).With the assistance of the PEDOT protective layer,the PEDOT@Zn//Cu battery maintained approximately 99.5%Coulombic efficiency after 450 cycles.Ex-situ scanning electron microscopy(SEM)and in situ optical microscopy characterizations further confirmed that the PEDOT protective layer can effectively suppress the growth of zinc dendrites.Additionally,the Zn-ion capacitors assembled by the PEDOT@Zn and activated carbon also demonstrated outstanding cycling stability.
基金Funded by the National Natural Science Foundation of China (No.60372002)
文摘An arachidic acid/poly (3, 4-ethylene dioxythiophene) (AA/PEDOT) multilayer Langmuir-Blodgett (LB) film was prepared by a modified LB film method. The theories were utilized to explain the effects between HCl molecule and LB film. The gas sensitivity mechanism of poly (3, 4-ethylene dioxythiophene) (PEDOT) multilayer film can be explained by the charge transfer between p system of PEDOT and oxidization HCl system. The gas sensitivity of PEDOT LB film deposited interdigital electrode to HCl was tested. The results showed that film thickness, treating temperature, deposition speed had different influence on film gas sensitivity. The AA/PEDOT film deposited device exhibited nonlinear behavior to HCl gas at lower concentration (20-60 ppm) and linear response behavior at higher gas concentration was observed. The time of the compound LB film of the AA/PEDOT responding to the 30 ppm HCl gas is about 20 seconds, which is far quicker than the time of the film to the PEDOTPRESS film(about 80 seconds). It is not higher film press to better film. When the film press attains 45 mNs/m, the sensitivity of the AA/PEDOT film on the contrary descends.
基金supported by the National Natural Science Foundation of China(21576125,21776117)the China Postdoctoral Science Foundation(2017M611716,2017M611734)+1 种基金the Six talent peaks project of Jiangsu Province(XCL-014)the Zhenjiang Science&Technology Program(SH2016012)~~
文摘Exfoliation of bulk graphitic carbon nitride(g‐C3N4)into two‐dimensional(2D)nanosheets is one of the effective strategies to improve its photocatalytic properties so that the 2D g‐C3N4 nanosheets(CN)have larger specific surface areas and more reaction sites.In addition,poly‐o‐phenylenediamine(PoPD)can improve the electrical conductivity and photocatalytic activity of semiconductor materials.Here,the novel efficient composite PoPD/AgCl/g‐C3N4 nanosheets was first synthesized by a precipitation reaction and the photoinitiated polymerization approach.The obtained photocatalysts have larger specific surface areas and could achieve better visible‐light response.However,silver chloride(AgCl)is susceptible to agglomeration and photocorrosion.The PoPD/AgCl/CN composite exhibits an extremely high photocurrent density,which is three times that of CN.Obviously enhanced photocatalytic activities of PoPD/AgCl/g‐C3N4 are revealed through the photodegradation of tetracycline.The stability of PoPD/AgCl/CN is demonstrated based on four cycles of experiments that reveal that the degradation rate only decreases slightly.Furthermore,.O2^-and h+are the main active species,which are confirmed through a trapping experiment and ESR spin‐trap technique.Therefore,the prepared PoPD/AgCl/CN can be considered as a stable photocatalyst,in which PoPD is added as a charge carrier and acts a photosensitive protective layer on the surface of the AgCl particles.This provides a new technology for preparing highly stable composite photocatalysts that can effectively deal with environmental issues.
基金We gratefully acknowledge financial support of this work by the Natural Science Foundation of Hubei Province (No. 2006ABB016) the National Natural Science Foundation of China (No. 20772041) Key Project of Chinese Ministry of Education (No. 107082).
文摘4(3H)-Quinazolinones have been synthesized from poly(ethylene glycol) (PEG) supported aza-Wittig reaction. 2-Dialkylamino- 4(3H)-quinazolinones 6 were synthesized efficiently by reaction of secondary amine with PEG-supported carbodiimides 4, which were obtained from aza-Wittig reaction of PEG-supported iminophosphoranes 3 with isocyanates.