In this work, noncovalent functionalization of multiwalled carbon nanotube (MWNT) with acridine orange (AO) by electropolymerization is studied. The obtained composite film is a viable alternate electrode material...In this work, noncovalent functionalization of multiwalled carbon nanotube (MWNT) with acridine orange (AO) by electropolymerization is studied. The obtained composite film is a viable alternate electrode material, non-toxic, chemical inert, not volatile, using to construct modified electrode. The new type modified electrode has both of unique properties of MWNT and poly acridine orange (POAO), can provide good sensitivity, low limits of detection, good response precision, and superb response stability.展开更多
The immobilization of SiW_(12)O_(40)^(4-)in poly(4-aminoazobenzene)film was done by electrochemical method.According to the continuous cyclic voltammograms of the modified electrode,it can be determined that SiW_(12)O...The immobilization of SiW_(12)O_(40)^(4-)in poly(4-aminoazobenzene)film was done by electrochemical method.According to the continuous cyclic voltammograms of the modified electrode,it can be determined that SiW_(12)O_(40)^(4-) in the polymer is very stable.The paper reports the elecctrochemical pro- perties of the modified electrode,Moreover,it was found that the modified electrode exhibits electrocatalysis for the reaction of oxygen.展开更多
A voltammetric sensor based on the electropolymerization of cobalt-poly(methionine)(Co-poly(Met)) on a glassy carbon electrode (GCE) was developed and applied for the determination of estriol by differential pulse vol...A voltammetric sensor based on the electropolymerization of cobalt-poly(methionine)(Co-poly(Met)) on a glassy carbon electrode (GCE) was developed and applied for the determination of estriol by differential pulse voltammetry (DPV) for the first time. The electrochemical properties of the Co-poly(Met)/GCE were analysed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to characterize the polymers on the GCE surface. The deposition of the Co-poly(Met) film on the GCE surface enhanced the sensor electronic transfer. CV studies revealed that estriol exhibits an irreversible oxidation peak at t0.58 V for the Co-poly(Met)/GCE (vs. Ag/AgCl reference electrode) in 0.10 mol/L Britton-Robinson buffer solution (pH=7.0). Different voltammetric scan rates (10-200 mV/s) suggested that the estriol oxidation on the Co-poly(Met)/GCE surface is controlled by adsorption and diffusion processes. Based on the optimized DPV conditions, the linear responses for estriol quantification were from 0.596 μmol/L to 4.76 μmol/L (R2 =0.996) and from 5.66 μmol/L to 9.90 μmol/L (R2 =0.994) with a limit of detection (LOD) of 0.0340 μmol/L and a limit of quantification (LOQ) of 0.113 μmol/L. The DPV-Co-poly(Met)/GCE method provided good intra-day and inter-day repeatability with RSD values lower than 5%. Also, no interference of real sample matrices was observed on the estriol voltammetric response, making the DPV-Copoly( Met)/GCE highly selective for estriol. The accuracy test showed that the estriol recovery was in the ranges 96.7%-103% and 98.7%-102% for pharmaceutical tablets and human urine, respectively. The estriol quantification in pharmaceutical tablets performed by the Co-poly(Met)/GCE-assisted DPV method was comparable to the official analytical protocols.展开更多
A composite film of DNA/poly(3-methylthiophene)(P3MT) modified glassy carbon electrode(GCE) has been fabricated by electro-deposition method.P3MT film was first electropolymerized at the GCE and the DNA layer was then...A composite film of DNA/poly(3-methylthiophene)(P3MT) modified glassy carbon electrode(GCE) has been fabricated by electro-deposition method.P3MT film was first electropolymerized at the GCE and the DNA layer was then immobilized on the P3MT layer by electrochemical method.The voltammetric behavior of 8-hydroxy-2'-deoxyguanosine(8-OH-dG) at the composite film modified electrode was studied.The effects of scan rates,pH and the interference of uric acid(UA) on the voltammetric behavior and detection of 8-OH-dG were also discussed.The experimental results suggest that the electrochemical behavior of 8-OH-dG at the composite film modified electrode was greatly improved due to the combination of the advantages of P3MT and DNA.In 0.1 M pH 7.0 phosphate buffer solution(PBS),the anodic peak currents of 8-OH-dG were linear with the 8-OH-dG concentration in two intervals,viz.0.28―4.2 μM and 4.2―19.6 μM.The detection limit of 56 nM 8-OH-dG could be estimated(S/N=3).This proposed composite film modified electrode shows excellent reproducibility and stability.It may have the potential application for the detection of 8-OH-dG in human urine.展开更多
文摘In this work, noncovalent functionalization of multiwalled carbon nanotube (MWNT) with acridine orange (AO) by electropolymerization is studied. The obtained composite film is a viable alternate electrode material, non-toxic, chemical inert, not volatile, using to construct modified electrode. The new type modified electrode has both of unique properties of MWNT and poly acridine orange (POAO), can provide good sensitivity, low limits of detection, good response precision, and superb response stability.
文摘The immobilization of SiW_(12)O_(40)^(4-)in poly(4-aminoazobenzene)film was done by electrochemical method.According to the continuous cyclic voltammograms of the modified electrode,it can be determined that SiW_(12)O_(40)^(4-) in the polymer is very stable.The paper reports the elecctrochemical pro- perties of the modified electrode,Moreover,it was found that the modified electrode exhibits electrocatalysis for the reaction of oxygen.
基金CNPq (454438/2014-1)CAPES+1 种基金FINEPFAPEMIG for the financial support to this work
文摘A voltammetric sensor based on the electropolymerization of cobalt-poly(methionine)(Co-poly(Met)) on a glassy carbon electrode (GCE) was developed and applied for the determination of estriol by differential pulse voltammetry (DPV) for the first time. The electrochemical properties of the Co-poly(Met)/GCE were analysed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to characterize the polymers on the GCE surface. The deposition of the Co-poly(Met) film on the GCE surface enhanced the sensor electronic transfer. CV studies revealed that estriol exhibits an irreversible oxidation peak at t0.58 V for the Co-poly(Met)/GCE (vs. Ag/AgCl reference electrode) in 0.10 mol/L Britton-Robinson buffer solution (pH=7.0). Different voltammetric scan rates (10-200 mV/s) suggested that the estriol oxidation on the Co-poly(Met)/GCE surface is controlled by adsorption and diffusion processes. Based on the optimized DPV conditions, the linear responses for estriol quantification were from 0.596 μmol/L to 4.76 μmol/L (R2 =0.996) and from 5.66 μmol/L to 9.90 μmol/L (R2 =0.994) with a limit of detection (LOD) of 0.0340 μmol/L and a limit of quantification (LOQ) of 0.113 μmol/L. The DPV-Co-poly(Met)/GCE method provided good intra-day and inter-day repeatability with RSD values lower than 5%. Also, no interference of real sample matrices was observed on the estriol voltammetric response, making the DPV-Copoly( Met)/GCE highly selective for estriol. The accuracy test showed that the estriol recovery was in the ranges 96.7%-103% and 98.7%-102% for pharmaceutical tablets and human urine, respectively. The estriol quantification in pharmaceutical tablets performed by the Co-poly(Met)/GCE-assisted DPV method was comparable to the official analytical protocols.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 20475024 & 20775031)the Shandong Tai-Shan Scholar Research Fund
文摘A composite film of DNA/poly(3-methylthiophene)(P3MT) modified glassy carbon electrode(GCE) has been fabricated by electro-deposition method.P3MT film was first electropolymerized at the GCE and the DNA layer was then immobilized on the P3MT layer by electrochemical method.The voltammetric behavior of 8-hydroxy-2'-deoxyguanosine(8-OH-dG) at the composite film modified electrode was studied.The effects of scan rates,pH and the interference of uric acid(UA) on the voltammetric behavior and detection of 8-OH-dG were also discussed.The experimental results suggest that the electrochemical behavior of 8-OH-dG at the composite film modified electrode was greatly improved due to the combination of the advantages of P3MT and DNA.In 0.1 M pH 7.0 phosphate buffer solution(PBS),the anodic peak currents of 8-OH-dG were linear with the 8-OH-dG concentration in two intervals,viz.0.28―4.2 μM and 4.2―19.6 μM.The detection limit of 56 nM 8-OH-dG could be estimated(S/N=3).This proposed composite film modified electrode shows excellent reproducibility and stability.It may have the potential application for the detection of 8-OH-dG in human urine.