Nowadays, recycled paper is broadly used due to environmental reasons. Furthermore, the addition of starch as a dry strength additive improves the properties of recycled paper. Poly-Lactic Acid (PLA), a product from b...Nowadays, recycled paper is broadly used due to environmental reasons. Furthermore, the addition of starch as a dry strength additive improves the properties of recycled paper. Poly-Lactic Acid (PLA), a product from bio-refinery process, has recently been shown to act as a promising strength additive that could be used in combination with starch to further improve the strength of paper. In this study, the use of PLA of three molecular weights (MW) in combination with four different starches was investigated. Three recycled pulps from different origins, with the kappa number of 27.9 to 66 were used. Paper handsheets were made, and selected paper properties were tested. The results indicate that handsheets properties were influenced by the MW of PLAs, the type of starch used, and the lignin content of the pulp. The paper handsheets made from lignin-rich pulp (pulp A, kappa number 66), combined with 0.1% medium MW PLA (PLA_1) and 0.9% cationic starch containing 0.43% N gave the highest improvement for tensile strength, wet tensile strength, air and water resistance. This result verifies that a higher kappa number pulp has better attraction to the hydrophobic PLA. Moreover, the higher charge cationic starch led to higher tensile strength due to the increase of affinity to the anionic fiber surface. Interestingly, results show that amphoteric starch is a promising substitute for high cationic charge starch when combined with the medium MW PLA to improve tensile strength of paper. This study demonstrated that a starch-PLA blend represents a promising approach in improving properties of recycled paper.展开更多
Composite nanofiber membranes based on biodegradable poly(lactic acid)(PLA) and cellulose nanofibrils(CNF) were produced via electrospinning. The influence of CNF content on the morphology, thermal properties, and mec...Composite nanofiber membranes based on biodegradable poly(lactic acid)(PLA) and cellulose nanofibrils(CNF) were produced via electrospinning. The influence of CNF content on the morphology, thermal properties, and mechanical properties of PLA/CNF composite nanofiber membranes were characterized by field scanning electron microscopy(FE-SEM), differential scanning calorimetry(DSC), thermogravimetric analysis(TGA), and dynamic mechanical analysis(DMA), respectively. The results show that the PLA/CNF composite nanofibers with smooth, free-bead surface can be successfully fabricated with various CNF contents. The introduction of CNF is an effective approach to improve the crystalline ability, thermal stability and mechanical properties for PLA/CNF composite fibers. The Young's moduli and tensile strength of the PLA/CNF composite nanofiber reach 106.6 MPa and 2.7 MPa when the CNF content is 3%, respectively, which are one times higher and 1.5 times than those of pure PLA nanofiber. Additionally, the water contact angle of PLA/CNF composite nanofiber membranes decreases with the increase of the CNF loading, resulting in the enhancement of their hydrophilicity.展开更多
Lactide was synthesized using lactic acid and stannous octoate as raw material and catalyst, respectively. Poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) was prepared by lactide and poly (ethylene glycol) (PEG) via...Lactide was synthesized using lactic acid and stannous octoate as raw material and catalyst, respectively. Poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) was prepared by lactide and poly (ethylene glycol) (PEG) via ring-opening polymerization. The most appropriate technological conditions of synthesis of lactide were researched in the paper. The copolymers were measured by Infrared spectroscopy (IR) and <sup>1</sup>H nuclear magnetic resonance (<sup>1</sup>H NMR). The results proved that the lactide and PLA-PEG were synthesized successfully. Hydrophilic performance of the copolymer was measured by a water contact angle tester after prepared into a flat membrane. The water contact angle changed from 81.5? to 71.6?, which proved that the hydrophily of PLA-PEG was better than PLA.展开更多
The influence of mica particles on the rheological and thermal properties of poly( lactic acid)( PLA) / mica composites were investigated by capillary rheometer and thermogravimetric( TG)analysis. The results show tha...The influence of mica particles on the rheological and thermal properties of poly( lactic acid)( PLA) / mica composites were investigated by capillary rheometer and thermogravimetric( TG)analysis. The results show that the PLA / mica blends are nonNewtonian pseudoplastic and display shear-thinning. The value of non-Newtonian index of the blends melt decreased obviously with the addition of mica particles but somehow even increased when shear rate exceeded 4 500 s- 1. In this work,it could be indicated that appropriate amount of mica particles could somehow enhance the resistance of PLA melt under high shear rate to deviate from Newtonian fluid. TG analysis shows that the thermal stability of PLA decreases a little after the incorporation of the mica particles.As mica particles decompose in a completely different way in contrast to PLA,this abnormal decrease of thermal stability of PLA / mica composite may be attributed to moisture stored between mica layers released at high temperature.展开更多
Development of home compostable materials based on bioavailable polymers is of high strategic interest as they ensure a significant reduction of the environmental footprint in many production sectors.In this work,the ...Development of home compostable materials based on bioavailable polymers is of high strategic interest as they ensure a significant reduction of the environmental footprint in many production sectors.In this work,the addition of thermoplastic starch to binary PLA/PBAT blends was studied.The compounds were obtained by a reactive extrusion process by means of a co-rotating twin screw extruder.Thermomechanical,physical and chemical characterization tests were carried out to highlight the effectiveness of the material design strategy.The compounds were subsequently reprocessed by cast extrusion and thermoforming in order to obtain products suitable for the storage of hot food.The extruded films and the thermoformed containers were further characterized to highlight their thermo-mechanical,physical and chemical properties.Thermo-rheological,mechanical and physical properties of the material and of the cast film were analyzed thoroughly using combined technique as capillary rheometer,MFI,DSC,VICAT/HDT,XRD,FTIR,UV-Vis,SEM,permeability and,lastly,running preliminary chemical inertness and biodegradation tests.Particular attention was also devoted to the evaluation of the thermo-mechanical resistance of the thermoformed containers,where the PLA/PBAT/TPS blends proved to be very effective,also presenting a high disintegration rate in ambient conditions.展开更多
Microspheres containing an antimetabolite drug 5-Fluorouracil were prepared from (poly(lactic) acide)(PLA) or poly(lactic acid)-polyethylene glycol(PLA-PEG) as the carrier by using a water-in-oil-in-water emulsion sol...Microspheres containing an antimetabolite drug 5-Fluorouracil were prepared from (poly(lactic) acide)(PLA) or poly(lactic acid)-polyethylene glycol(PLA-PEG) as the carrier by using a water-in-oil-in-water emulsion solvent evaporation technique. The conditions of the microspheres preparation such as polymer concentration in organic solvent, relative molecular weight of PLA-PEG and PLA/PEG mass ratio were discussed. The surface morphology and the size of the microspheres were observed by SEM. The drug content of microspheres was examined by TGA and the drug release in vitro was evaluated. According to the results, the drug content increased with the nano-silica used. The highest drug content in this study was 39.9%. The drug-release kinetics satisfied the requirements of controlled drug-release.展开更多
文摘Nowadays, recycled paper is broadly used due to environmental reasons. Furthermore, the addition of starch as a dry strength additive improves the properties of recycled paper. Poly-Lactic Acid (PLA), a product from bio-refinery process, has recently been shown to act as a promising strength additive that could be used in combination with starch to further improve the strength of paper. In this study, the use of PLA of three molecular weights (MW) in combination with four different starches was investigated. Three recycled pulps from different origins, with the kappa number of 27.9 to 66 were used. Paper handsheets were made, and selected paper properties were tested. The results indicate that handsheets properties were influenced by the MW of PLAs, the type of starch used, and the lignin content of the pulp. The paper handsheets made from lignin-rich pulp (pulp A, kappa number 66), combined with 0.1% medium MW PLA (PLA_1) and 0.9% cationic starch containing 0.43% N gave the highest improvement for tensile strength, wet tensile strength, air and water resistance. This result verifies that a higher kappa number pulp has better attraction to the hydrophobic PLA. Moreover, the higher charge cationic starch led to higher tensile strength due to the increase of affinity to the anionic fiber surface. Interestingly, results show that amphoteric starch is a promising substitute for high cationic charge starch when combined with the medium MW PLA to improve tensile strength of paper. This study demonstrated that a starch-PLA blend represents a promising approach in improving properties of recycled paper.
基金Funded by the Outstanding Young Scientific Research Personnel Training Plan in Colleges and Universities of Fujian Province(No.GY-Z160146)the Research Fund of Fujian University of Technology(Nos.GY-Z15091,GY-Z160121)+2 种基金the External Cooperative Projects of Fujian Province(No.2018I0001)the Young Teachers Education Research Project(No.JAT170377)Fujian Province Undergraduate Training Program for Innovation and Entrepreneurship(No.201810388048)
文摘Composite nanofiber membranes based on biodegradable poly(lactic acid)(PLA) and cellulose nanofibrils(CNF) were produced via electrospinning. The influence of CNF content on the morphology, thermal properties, and mechanical properties of PLA/CNF composite nanofiber membranes were characterized by field scanning electron microscopy(FE-SEM), differential scanning calorimetry(DSC), thermogravimetric analysis(TGA), and dynamic mechanical analysis(DMA), respectively. The results show that the PLA/CNF composite nanofibers with smooth, free-bead surface can be successfully fabricated with various CNF contents. The introduction of CNF is an effective approach to improve the crystalline ability, thermal stability and mechanical properties for PLA/CNF composite fibers. The Young's moduli and tensile strength of the PLA/CNF composite nanofiber reach 106.6 MPa and 2.7 MPa when the CNF content is 3%, respectively, which are one times higher and 1.5 times than those of pure PLA nanofiber. Additionally, the water contact angle of PLA/CNF composite nanofiber membranes decreases with the increase of the CNF loading, resulting in the enhancement of their hydrophilicity.
文摘Lactide was synthesized using lactic acid and stannous octoate as raw material and catalyst, respectively. Poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) was prepared by lactide and poly (ethylene glycol) (PEG) via ring-opening polymerization. The most appropriate technological conditions of synthesis of lactide were researched in the paper. The copolymers were measured by Infrared spectroscopy (IR) and <sup>1</sup>H nuclear magnetic resonance (<sup>1</sup>H NMR). The results proved that the lactide and PLA-PEG were synthesized successfully. Hydrophilic performance of the copolymer was measured by a water contact angle tester after prepared into a flat membrane. The water contact angle changed from 81.5? to 71.6?, which proved that the hydrophily of PLA-PEG was better than PLA.
文摘The influence of mica particles on the rheological and thermal properties of poly( lactic acid)( PLA) / mica composites were investigated by capillary rheometer and thermogravimetric( TG)analysis. The results show that the PLA / mica blends are nonNewtonian pseudoplastic and display shear-thinning. The value of non-Newtonian index of the blends melt decreased obviously with the addition of mica particles but somehow even increased when shear rate exceeded 4 500 s- 1. In this work,it could be indicated that appropriate amount of mica particles could somehow enhance the resistance of PLA melt under high shear rate to deviate from Newtonian fluid. TG analysis shows that the thermal stability of PLA decreases a little after the incorporation of the mica particles.As mica particles decompose in a completely different way in contrast to PLA,this abnormal decrease of thermal stability of PLA / mica composite may be attributed to moisture stored between mica layers released at high temperature.
文摘Development of home compostable materials based on bioavailable polymers is of high strategic interest as they ensure a significant reduction of the environmental footprint in many production sectors.In this work,the addition of thermoplastic starch to binary PLA/PBAT blends was studied.The compounds were obtained by a reactive extrusion process by means of a co-rotating twin screw extruder.Thermomechanical,physical and chemical characterization tests were carried out to highlight the effectiveness of the material design strategy.The compounds were subsequently reprocessed by cast extrusion and thermoforming in order to obtain products suitable for the storage of hot food.The extruded films and the thermoformed containers were further characterized to highlight their thermo-mechanical,physical and chemical properties.Thermo-rheological,mechanical and physical properties of the material and of the cast film were analyzed thoroughly using combined technique as capillary rheometer,MFI,DSC,VICAT/HDT,XRD,FTIR,UV-Vis,SEM,permeability and,lastly,running preliminary chemical inertness and biodegradation tests.Particular attention was also devoted to the evaluation of the thermo-mechanical resistance of the thermoformed containers,where the PLA/PBAT/TPS blends proved to be very effective,also presenting a high disintegration rate in ambient conditions.
文摘Microspheres containing an antimetabolite drug 5-Fluorouracil were prepared from (poly(lactic) acide)(PLA) or poly(lactic acid)-polyethylene glycol(PLA-PEG) as the carrier by using a water-in-oil-in-water emulsion solvent evaporation technique. The conditions of the microspheres preparation such as polymer concentration in organic solvent, relative molecular weight of PLA-PEG and PLA/PEG mass ratio were discussed. The surface morphology and the size of the microspheres were observed by SEM. The drug content of microspheres was examined by TGA and the drug release in vitro was evaluated. According to the results, the drug content increased with the nano-silica used. The highest drug content in this study was 39.9%. The drug-release kinetics satisfied the requirements of controlled drug-release.