期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Synthesis and Hydrophilic Performance of Poly(Lactic Acid)-Poly(Ethylene Glycol) Block Copolymers 被引量:2
1
作者 Gang Xu Sihao Chen +2 位作者 Xiao Yan Chunyu Yang Zhichang Chen 《American Journal of Analytical Chemistry》 2016年第3期299-305,共7页
Lactide was synthesized using lactic acid and stannous octoate as raw material and catalyst, respectively. Poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) was prepared by lactide and poly (ethylene glycol) (PEG) via... Lactide was synthesized using lactic acid and stannous octoate as raw material and catalyst, respectively. Poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) was prepared by lactide and poly (ethylene glycol) (PEG) via ring-opening polymerization. The most appropriate technological conditions of synthesis of lactide were researched in the paper. The copolymers were measured by Infrared spectroscopy (IR) and <sup>1</sup>H nuclear magnetic resonance (<sup>1</sup>H NMR). The results proved that the lactide and PLA-PEG were synthesized successfully. Hydrophilic performance of the copolymer was measured by a water contact angle tester after prepared into a flat membrane. The water contact angle changed from 81.5? to 71.6?, which proved that the hydrophily of PLA-PEG was better than PLA. 展开更多
关键词 LACTIDE poly(lactic acid)-poly(Ethylene Glycol) (PLA-PEG) Prepare Hydrophily
下载PDF
A novel bioactive nerve conduit for the repair of peripheral nerve injury 被引量:3
2
作者 Bin-bin Li Yi-xia Yin +2 位作者 Qiong-jiao Yan Xin-yu Wang Shi-pu Li 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第1期150-155,共6页
The use of a nerve conduit provides an opportunity to regulate cytokines, growth factors and neurotrophins in peripheral nerve regeneration and avoid autograft defects. We constructed a poly-D-L-lactide(PDLLA)-based... The use of a nerve conduit provides an opportunity to regulate cytokines, growth factors and neurotrophins in peripheral nerve regeneration and avoid autograft defects. We constructed a poly-D-L-lactide(PDLLA)-based nerve conduit that was modified using poly{(lactic acid)-co-[(glycolic acid)-alt-(L-lysine)]} and β-tricalcium phosphate. The effectiveness of this bioactive PDLLA-based nerve conduit was compared to that of PDLLA-only conduit in the nerve regeneration following a 10-mm sciatic nerve injury in rats. We observed the nerve morphology in the early period of regeneration, 35 days post injury, using hematoxylin-eosin and methylene blue staining. Compared with the PDLLA conduit, the nerve fibers in the PDLLA-based bioactive nerve conduit were thicker and more regular in size. Muscle fibers in the soleus muscle had greater diameters in the PDLLA bioactive group than in the PDLLA only group. The PDLLA-based bioactive nerve conduit is a promising strategy for repair after sciatic nerve injury. 展开更多
关键词 nerve regeneration polylactic acid poly{(lactic acid)-co-[(glycolic acid)-alt-(L-lysine)]} β-tricalcium phosphate nerve conduit nerve fiber neural regeneration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部