Copolymer of maleic acid and acrylic acid (PMA-100), combining with polyvinyl butyral (PVB) ultrafiltration membrane was used for the removal of Mn(II) from waste water by complexation-ultrafiltration. The carbo...Copolymer of maleic acid and acrylic acid (PMA-100), combining with polyvinyl butyral (PVB) ultrafiltration membrane was used for the removal of Mn(II) from waste water by complexation-ultrafiltration. The carboxylic group content of PMA-100 and the rate of complexation reaction were measured. Effects of the mass ratio of PMA-100 to Mn(II) (n), pH, background electrolyte, etc on the rejection rate (R) and permeate flux (J) were investigated. The results show that carboxylic group content of PMA-100 is 9.5 mmol/g. The complexation of Mn(II) with PMA-100 is rapid and completed within 5 min at pH 6.0. Both R and J increase with pH increasing in the range of 2.5-7.0, and R increases with the increase of n at pH 6.0 while J is little affected. The background electrolyte leads to the decrease of R, and CaCl2 has much greater effect on R than NaCl at the same ionic strength.展开更多
In this study, we developed a novel artificial nerve graft termed self-assembling peptide nanofiber scaffold (SAPNS)-containing poly(lactic-co-glycolic acid) (PLGA) conduit (SPC) and used it to bridge a 10-mm-...In this study, we developed a novel artificial nerve graft termed self-assembling peptide nanofiber scaffold (SAPNS)-containing poly(lactic-co-glycolic acid) (PLGA) conduit (SPC) and used it to bridge a 10-mm-long sciatic nerve defect in the rat. Retrograde tracing, behavioral testing and histomorphometric analyses showed that compared with the empty PLGA conduit implantation group, the SPC implantation group had a larger number of growing and extending axons, a markedly increased diameter of regenerated axons and a greater thickness of the myelin sheath in the conduit. Furthermore, there was an increase in the size of the neuromuscular junction and myofiber diameter in the target muscle. These findings suggest that the novel artificial SPC nerve graft can promote axonal regeneration and remyelination in the transected peripheral nerve and can be used for repairing peripheral nerve injury.展开更多
Biodegradable chitosan-g-poly (D, L-lactic acid) copolymers were prepared via two methods. (1) The lactide was grafted onto hydroxyl groups of chitosan by using macromolecular initiator sodium of trimethylsilyl-chit...Biodegradable chitosan-g-poly (D, L-lactic acid) copolymers were prepared via two methods. (1) The lactide was grafted onto hydroxyl groups of chitosan by using macromolecular initiator sodium of trimethylsilyl-chitosan, (2) poly (D,L-lactic acid)(PLA) with low molecular weight can be linked to the amino group by coupling activated PLA to trimethylsilyl-chitosan. Two graft copolymers had hydrophilic-hydrophobic character and can be applied as carriers for drug delivery.展开更多
Schwann cells, nerve regeneration promoters in peripheral nerve tissue engineering, can be used to repair both the peripheral and central nervous systems. However, isolation and puriifcation of Schwann cells are compl...Schwann cells, nerve regeneration promoters in peripheral nerve tissue engineering, can be used to repair both the peripheral and central nervous systems. However, isolation and puriifcation of Schwann cells are complicated by contamination with ifbroblasts. Current reported measures are mainly limited by either high cost or complicated procedures with low cell yields or purity. In this study, we collected dorsal root ganglia from neonatal rats from which we obtained highly puriifed Schwann cells using serum-free melanocyte culture medium. The purity of Schwann cells (〉95%) using our method was higher than that using standard medium containing fetal bovine serum. The obtained Schwann cells were implanted into poly(lactic-co-glycolic acid)/chi-tosan conduits to repair 10-mm sciatic nerve defects in rats. Results showed that axonal diameter and area were signiifcantly increased and motor functions were obviously improved in the rat sciatic nerve tissue. Experimental ifndings suggest that serum-free melanocyte culture medium is conducive to purify Schwann cells and poly(lactic-co-glycolic acid)/chitosan nerve conduits combined with Schwann cells contribute to restore sciatic nerve defects.展开更多
Objective: To prepare and characterize poly lactic-co-glycolic acid(PLGA) nanoparticles loaded with soluble leishmanial antigen or autoclaved leishmanial antigen and explore in vitro and in vivo immunogenicity of anti...Objective: To prepare and characterize poly lactic-co-glycolic acid(PLGA) nanoparticles loaded with soluble leishmanial antigen or autoclaved leishmanial antigen and explore in vitro and in vivo immunogenicity of antigen encapsulated nanoparticles. Methods: Water/oil/water double emulsion technique was employed to synthesize PLGA nanoparticles, and scanning electron microscopy, Fourier transform infrared spectroscopy and Zeta-potential measurements were used to identify the characteristics of nanoparticles. Cytotoxicity of synthetized nanoparticles on J774 macrophage were investigated by MTT assays. To determine the in vitro immunostimulatory efficacies of nanoparticles, griess reaction and ELISA was used to measure the amounts of NO and cytokines. During the in vivo analysis, Balb/c mice were immunized with vaccine formulations, and protective properties of nanoparticles were measured by Leishman Donovan unit in the liver following the infection. Cytokine levels in spleens of mice were determined by ELISA. Results: MTT assay showed that neither soluble leishmanial antigen nor autoclaved leishmanial antigen encapsulated nanoparticles showed cytotoxicity against J774 macrophage cells. Contrary to free antigens, both autoclaved leishmanial antigen-nanoparticle and soluble leishmanial antigen-nanoparticle formulations led to a 10 and 16-fold increase in NO amounts by macrophages, respectively. Leishman Donovan unit calculations revealed that soluble leishmanial antigen-nanoparticles and autoclaved leishmanial antigen-nanoparticles yielded 52% and 64% protection against visceral leishmaniasis in mouse models. Besides, in vitro and in vivo tests demonstrated that by increasing IFN-γ and IL-12 levels and inhibiting IL-4 and IL-10 secretions, autoclaved leishmanial antigen-nanoparticles and soluble leishmanial antigennanoparticles triggered Th1 immune response. Conclusions: Both autoclaved leishmanial antigen-nanoparticles and soluble leishmanial antigen-nanoparticles formulations provide exceptional in vitro and in vivo immunostimulatory activities. Hence, PLGA-based antigen delivery systems are recommended as potential vaccine candidates against visceral leishmaniasis.展开更多
Tensile stress and tensile strain directly affect the quality of nerve regeneration after bridging nerve defects by poly(lactic-co-glycolic acid) conduit transplantation and autogenous nerve grafting for sciatic ner...Tensile stress and tensile strain directly affect the quality of nerve regeneration after bridging nerve defects by poly(lactic-co-glycolic acid) conduit transplantation and autogenous nerve grafting for sciatic nerve injury. This study collected the sciatic nerve from the gluteus maximus muscle from fresh human cadaver, and established 10-mm-long sciatic nerve injury models by removing the ischium, following which poly(lactic-co-glycolic acid) conduits or autogenous nerve grafts were transplanted. Scanning electron microscopy revealed that the axon and myelin sheath were torn, and the vessels of basilar membrane were obstructed in the poly(lactic-co-glycolic acid) conduit-repaired sciatic nerve following tensile testing. There were no significant differences in tensile tests with autogenous nerve graft-repaired sciatic nerve. Following poly(lactic-co-glycolic acid) conduit transplantation for sciatic nerve repair, tensile test results suggest that maximum tensile load, maximum stress, elastic limit load and elastic limit stress increased compared with autogenous nerve grafts, but elastic limit strain and maximum strain decreased. Moreover, the tendencies of stress-strain curves of sciatic nerves were similar after transplantation of poly(lactic-co-glycolic acid) conduits or autogenous nerve grafts. Results showed that after transplantation in vitro for sciatic nerve injury, poly(lactic-co-glycolic acid) conduits exhibited good intensity, elasticity and plasticity, indicating that poly(lactic-co-glycolic acid) conduits are suitable for sciatic nerve injury repair.展开更多
The goal of the present study is to utilize cis-diamminedichloroplatinum (cisplatin) loaded polymer nanoparticles (NPs) to give a controlled, extended, and local drug therapy for the treatment of cancer. We have used ...The goal of the present study is to utilize cis-diamminedichloroplatinum (cisplatin) loaded polymer nanoparticles (NPs) to give a controlled, extended, and local drug therapy for the treatment of cancer. We have used biodegradable and biocompatible poly(lactic-co-glycolic acid) (PLGA) to prepare the NPs by adjusting the double emulsion technique using poly(vinylalcohol) as a surface active agent. The PLGA NPs were characterized for particle size and shape, controlled release of cisplatin, and degradation. Cisplatin solubility in deionized water was increased up to 4 mg/mL by simply changing the solution parameters. Cisplatin encapsulated NPs were incubated in phosphate buffered saline (PBS) at 37?C to study the release kinetics of cisplatin. Cisplatin was released in a sustained manner with less than 20% release during a 3-day period followed by 50% release during a 21-day period. A degradation study of PLGA NPs demonstrated the loss of spherical shape during a 21-day period. We also examined the cisplatin sensitive A2780 cell apoptosis when cells were incubated with cisplatin encapsulated PLGA NPs. A large number of cell apoptosis occurred as a result of cisplatin release from the PLGA NPs. These results suggest that cisplatin encapsulated PLGA NPs can be used to treat the cancer cells by injecting them into a localized site minimizing the side effects.展开更多
A novel kind of copolymer with ABA-type block structure was synthesized by anionic ring-opening polymerization of beta-butyrolactone (beta-BL) in the presence of a PEG-based dicarboxylates as macroinitiators which wer...A novel kind of copolymer with ABA-type block structure was synthesized by anionic ring-opening polymerization of beta-butyrolactone (beta-BL) in the presence of a PEG-based dicarboxylates as macroinitiators which were prepared by the esterification of aliphatic cyclic anhydride and poly(ethylene glycol) (PEG) oligomers (M-n = 2000, 4000 and 6000) and conversion of potassium dicarboxylates. The resultant copolymers as well as the intermediates were characterized by IR, H-1-NMR and GPC.展开更多
BACKGROUND: Nogo A antigen is the major inhibiting factor blocking regeneration of the injured spinal cord. Neutralizing Nogo A antigens using Nogo A antibodies may help promote neurite regeneration and nervous funct...BACKGROUND: Nogo A antigen is the major inhibiting factor blocking regeneration of the injured spinal cord. Neutralizing Nogo A antigens using Nogo A antibodies may help promote neurite regeneration and nervous function recovery. For successful regeneration, sustained release of the antibody from a biodegradable material loaded with Nogo A antibodies to the injury site is required. OBJECTIVE: To compare the therapeutic effects of poly lactic-co-glycolic acid (PLGA)-Nogo A antibody delayed-release microspheres and Nogo A antibody alone on spinal regeneration in Sprague-Dawley rats with complete transverse injury to the spinal cord. DESIGN, TIME AND SETTING: A randomized, controlled animal trial was performed at the Pharmacological Laboratory of West China Center of Medical Sciences, Sichuan University, between October 2007 and January 2008. MATERIALS: Goat anti-rat Nogo A monoclonal antibody was purchased from Santa, American; goat anti-rat neurofilament 200 monoclonal antibody was from Zhongshan Goldenbridge, Beijing, China; PLGA-Nogo A antibody delayed-release microspheres were provided by the College of Pharmacy, Sichuan University. METHODS: A total of 36 adult female Sprague Dawley rats were used to establish models of completely transected spinal cord injury, at T10. Animals were randomly divided into three groups (n=12): model, Nogo A antibody alone, and Nogo A antibody delayed-release microsphere groups. After transverse injury of the spinal cord, 50 μ L normal saline solution, 50 μL normal saline solution containing 50μL g Nogo A antibody, and 50 μL normal saline solution containing 50 μg Nogo A antibody microspheres were administered to the respective groups at the injury site. MAIN OUTCOME MEASURES: The expression of Nogo A and neurofilament 200 in injured spinal cord was tested immunohistochemically, and motor function of rats was assessed by Basso-Beattie-Bresnahan (BBB) locomotor rating scale. RESULTS: Four weeks after injury, expression of Nogo A in microsphere group was significantly less than model and Nogo A antibody alone groups (P 〈 0.05); while there was no significant difference between model and Nogo A antibody alone groups (P 〉 0.05). Ten weeks after injury, microsphere group showed a significantly greater expression of neurofilament 200 than model and Nogo A antibody alone groups (P 〈 0.05); while no significant difference was found between model and Nogo A antibody alone groups (P 〉 0.05). At postoperative weeks 5 and 6, the score of BBB locomotor rating scale in microsphere group was significantly greater than the model group (P 〈 0.05), and at postoperative weeks 7 10, the score was much greater than model and Nogo A antibody alone groups (P 〈 0.05). CONCLUSION: Nogo A antibody delayed-release microspheres decreased Nogo A expression, increased neurofilament 200 expression in the injured spinal cord of rats, and promoted recovery of motor function through sustained drug release over a long-term period.展开更多
BACKGROUND: A degradable poly(lactic-co-glycolic acid) (PLGA) scaffold has been used to construct a degradable porous scaffold. This template can simulate the in vivo microenvironment and promote tissue formation...BACKGROUND: A degradable poly(lactic-co-glycolic acid) (PLGA) scaffold has been used to construct a degradable porous scaffold. This template can simulate the in vivo microenvironment and promote tissue formation. OBJECTIVE: To observe the histopathological changes during degeneration and regeneration of the intervertebral disc, and to analyze the effects of a PLGA scaffold on nerve fiber ingrowth into the lesion in vivo. DESIGN, TIME AND SETTING: A randomized, controlled animal experiment was performed at the Orthopaedic Laboratory, Clinic Medical Research Institution, Sir Run Run Shaw Hospital, Zhejiang University, from December 2007 to July 2008. MATERIALS: PLGA (China Textile Academy); growth-associated protein-43 (Life-span, USA); and protein gene product 9.5 antibody (AbD, United Kingdom) were used in this study. METHODS: Three consecutive segments of the intervertebral disc of thirty-two healthy adult male New Zealand rabbits were exposed, comprising L3-4, L4-5 and L5-6. Experimental intervertebral disc (L4-5 and L5-6) models were established by two different methods. In the test (trephine + scaffold) group, a 5-mm deep hole was drilled into the annulus fibrosus using a 3-mm diameter trephine, and the PLGA scaffold was implanted into the hole. In the acupuncture group, the remaining experimental intervertebral disc annulus fibrosus was damaged using a 16G needle at a depth of 5 mm. The L3-4 disc served as a control. MAIN OUTCOME MEASURES: Intervertebral disc degeneration was assessed using radiography, magnetic resonance imaging, and histological examination at various time points post-surgery. Nerve fiber ingrowth into the degenerated intervertebral disc was observed using immunohistochemical staining for growth-associated protein-43 and protein gene product 9.5. RESULTS: Compared with the normal controls, the heights of the damaged intervertebral discs were decreased, and T2 signal intensity was decreased in the test and acupuncture groups 2 weeks post-surgery. Intervertebral disc degeneration was faster in the test group than in the acupuncture group. PLGA was coated with newly formed tissue, gradually degraded, and absorbed, and could induce tissue ingrowth deep into the annulus fibrosus. Results of immunohistochemical staining showed that nerve fibers were distributed in newly formed tissue in the test group, and in the superficial layer or surrounding scar tissue in the acupuncture group. CONCLUSION: A porous PLGA scaffold provides an important biological channel to induce nerve fiber ingrowth deep into the degenerated intervertebral disc.展开更多
The effect of Argon ion irradiation to the surface properties of poly(lactic-co-glycolic) acid (PLGA) was studied. A beam of 170 keV Argon ions was implanted at different fluencies (1 × 1012, 1 × 1013, 1 ...The effect of Argon ion irradiation to the surface properties of poly(lactic-co-glycolic) acid (PLGA) was studied. A beam of 170 keV Argon ions was implanted at different fluencies (1 × 1012, 1 × 1013, 1 × 1014, and 1 × 1015 ions/cm2). X-ray photoelectron spectroscopy (XPS) was used to analyze the evolution of the bonding microstructure of PLGA due to irradiation. Surface morphology was monitored using atomic force microscopy (AFM). AFM analysis shows that film roughness increased to maximum at the dose of 1 × 1014 ions/cm2 where the formations of hillocks were also detected. Hydrophilicity of PLGA is important for their applications in biomedicine such as bioscaffolds. Hydrophilicity was monitored using water contact angle measurements for both unmodified and ion-modified PLGA. It was observed that hydrophilicity of PLGA changes with the ion irradiation. This demonstrates that ion irradiation can be an alternative approach to control hydrophilicity of PLGA. PLGA scaffolds modified with ion irradiation could therefore be more suitable for the biomedical applications.展开更多
This study aims to beneficiate low grade goethitic iron ore fines using a selective flocculation process. Selective flocculation studies were conducted using different polymers such as starch amylopectin(AP), poly acr...This study aims to beneficiate low grade goethitic iron ore fines using a selective flocculation process. Selective flocculation studies were conducted using different polymers such as starch amylopectin(AP), poly acrylic acid(PAA), and a graft copolymer(AP-g-PAA). The obtained results were analyzed; they indicate the enhancement of the iron ore grade from 58.49% to 67.52% using AP-g-PAA with a recovery of 95.08%. In addition, 64.45% Fe with a recovery of 88.79% was obtained using AP. Similarly, using PAA, the grade increased to 63.46% Fe with a recovery of 82.10%. The findings are also supported by characterizing concentrates using X-ray diffraction(XRD) and electron probe microanalysis(EPMA) techniques.展开更多
In this study a low molecular weight triblock copolymer derived fromε-caprolactone and tetrahydrofuran was used as a non-reactive compatibilizer of immiscible PLA/PCL blends.Ternary blends with 0,1.5 wt%,3 wt%and 5 w...In this study a low molecular weight triblock copolymer derived fromε-caprolactone and tetrahydrofuran was used as a non-reactive compatibilizer of immiscible PLA/PCL blends.Ternary blends with 0,1.5 wt%,3 wt%and 5 wt% copolymer and about 75 wt%PLA were prepared by single screw extrusion and characterized by scanning electron microscopy(SEM),differential scanning calorimetry(DSC),dynamic mechanical analysis(DMA),tensile and Izod impact testing.SEM micrographs showed that the size of the dispersed PCL domains was practically constant regardless of copolymer concentration.This result can be explained by the low shear rate employed during processing step and a decrease of PCL viscosity by presence of the triblock copolymer.However,when the copolymer concentration increased,strain at break of PLA/PCL blends also increased.PLA/PCL blend with 0 wt% copolymer presented 2%strain at break,whereas PLA/PCL blend with 5 wt%copolymer exhibited 90%.展开更多
We have designed a novel nerve guidance conduit(NGC) made from silk fibroin and poly(lactic-co-glycolic acid) through electrospinning and weaving(ESP-NGCs). Several physical and biological properties of the ESP-...We have designed a novel nerve guidance conduit(NGC) made from silk fibroin and poly(lactic-co-glycolic acid) through electrospinning and weaving(ESP-NGCs). Several physical and biological properties of the ESP-NGCs were assessed in order to evaluate their biocompatibility. The physical properties, including thickness, tensile stiffness, infrared spectroscopy, porosity, and water absorption were determined in vitro. To assess the biological properties, Schwann cells were cultured in ESP-NGC extracts and were assessed by morphological observation, the MTT assay, and immunohistochemistry. In addition, ESP-NGCs were subcutaneously implanted in the backs of rabbits to evaluate their biocompatibility in vivo. The results showed that ESP-NGCs have high porosity, strong hydrophilicity, and strong tensile stiffness. Schwann cells cultured in the ESP-NGC extract fluids showed no significant differences compared to control cells in their morphology or viability. Histological evaluation of the ESP-NGCs implanted in vivo indicated a mild inflammatory reaction and high biocompatibility. Together, these data suggest that these novel ESP-NGCs are biocompatible, and may thus provide a reliable scaffold for peripheral nerve repair in clinical application.展开更多
Research and development of the ideal artificial bone-substitute materials to replace autologous and allogeneic bones for repairing bone defects is still a challenge in clinical orthopedics.Recently,poly(lactic-co-gly...Research and development of the ideal artificial bone-substitute materials to replace autologous and allogeneic bones for repairing bone defects is still a challenge in clinical orthopedics.Recently,poly(lactic-co-glycolic acid)(PLGA)-based artificial bone-substitute materials are attracting increasing attention as the benefit of their suitable biocompatibility,degradability,mechanical properties,and capabilities to promote bone regeneration.In this article,we comprehensively review the artificial bone-substitute materials made from PLGA or the composites of PLGA and other organic and inorganic substances,elaborate on their applications for bone regeneration with or without bioactive factors,and prospect the challenges and opportunities in clinical bone regeneration.展开更多
Non-small cell lung cancer(NSCLC) accounts for about 85% of all lung cancers. Traditional chemotherapy for this disease leads to serious side effects. Here we prepared an inhalable oridonin-loaded poly(lactic-co-glyco...Non-small cell lung cancer(NSCLC) accounts for about 85% of all lung cancers. Traditional chemotherapy for this disease leads to serious side effects. Here we prepared an inhalable oridonin-loaded poly(lactic-co-glycolic)acid(PLGA) large porous microparticle(LPMP) for in situ treatment of NSCLC with the emulsion/solvent evaporation/freeze-drying method. The LPMPs were smooth spheres with many internal pores. Despite a geometric diameter of 10 mm, the aerodynamic diameter of the spheres was only 2.72 mm, leading to highly efficient lung deposition. In vitro studies showed that most of oridonin was released after 1 h, whereas the alveolar macrophage uptake of LPMPs occurred after 8 h, so that most of oridonin would enter the surroundings without undergoing phagocytosis. Rat primary NSCLC models were built and administered with saline, oridonin powder, gemcitabine, and oridonin-loaded LPMPs via airway, respectively. The LPMPs showed strong anticancer effects. Oridonin showed strong angiogenesis inhibition and apoptosis. Relevant mechanisms are thought to include oridonin-induced mitochondrial dysfunction accompanied by low mitochondrial membrane potentials, downregulation of BCL-2 expressions, upregulation of expressions of BAX, caspase-3 and caspase-9. The oridonin-loaded PLGALPMPs showed high anti-NSCLC effects after pulmonary delivery. In conclusion, LPMPs are promising dry powder inhalations for in situ treatment of lung cancer.展开更多
The aim of the present study was to develop a novel long-acting Poly(lactic-co-glycolic acid)(PLGA)-based microspheres formulation of Bisdemethoxycurcum(BDMC) by emulsionsolvent evaporation method. Meanwhile, the effe...The aim of the present study was to develop a novel long-acting Poly(lactic-co-glycolic acid)(PLGA)-based microspheres formulation of Bisdemethoxycurcum(BDMC) by emulsionsolvent evaporation method. Meanwhile, the effects of the volume ratio of the dispersed phase and continuous phase, the concentration of PLGA and PVA, the theoretical drug loading and stirring speed were investigated. The mean diameter of the microspheres was 8.5 μm and the size distribution was narrow. The encapsulation efficiency(EE) and drug loading efficiency(DLE) of BDME loaded PLGA microspheres(BDMC-PLGA-MS) was 94.18% and 8.14%,respectively. In an in vitro study of drug release, it can be concluded that the BDMC-PLGAMS exhibited sustained and long-term release properties for 96 h. Stability studies suggested that the microspheres we prepared had a very good stability. Furthermore, the results of an in vivo study indicated that the BDMC-PLGA-MS had sustained release effect and was mainly distributed in the lung tissue, and less distribution in other tissues, which indicated that microspheres could be an effective parenteral carrier for the delivery of BDMC in lung cancer treatment.展开更多
Chitosan-graft-poly(lactic acid) (CS-g-PLA) copolymer was synthesized through emulsion self-assembly in a water-in-oil (W/O) microemulsion. The water phase was composed of CS aqueous solution, while the oil phas...Chitosan-graft-poly(lactic acid) (CS-g-PLA) copolymer was synthesized through emulsion self-assembly in a water-in-oil (W/O) microemulsion. The water phase was composed of CS aqueous solution, while the oil phase was made up of PLA in chloroform. The W/O microemulsion was fabricated in the presence of surfactant span-80 and the self-assembly was performed between PLA and CS under the effect of N-(3-dimethylaminopropyl)-N'ethylcarbodiimide hydrochloride (EDC'HCI). FTIR and IH-NMR analysis indicated PLA was grafted onto the backbone of CS via the reaction between the carboxyl groups in PLA and the amino groups in CS. 1H-NMR characterization further revealed the grafting content of PLA was 16%. The obtained CS-g-PLA could self-assemble to form micelles, their size distributed in the range of 125-375 nm with average diameter of 142 nm. The present design integrates the favorable biological properties of CS and the excellent mechanical properties of PLA, which makes CS-g-PLA copolymer a promising candidate as a carrier for targeted bioactive molecules delivery.展开更多
Transdermal drug delivery systems have overcome many limitations of other drug administration routes,such as injection pain and first-pass metabolism following oral route,although transdermal drug delivery systems are...Transdermal drug delivery systems have overcome many limitations of other drug administration routes,such as injection pain and first-pass metabolism following oral route,although transdermal drug delivery systems are limited to drugs with low molecular weight.Hence,new emerging technology allowing high molecular weight drug delivery across the skin—known as‘microneedles’—has been developed,which creates microchannels that facilitate drug delivery.In this report,drug-loaded degradable conic microneedles are modeled to characterize the degradation rate and drug release profile.Since a lot of data are available for polylactic acid-co-glycolic acid(PLGA)degradation in the literature,PLGA of various molecular weights-as a biodegradable polymer in the polyester family-is used for modeling and verification of the drug delivery in themicroneedles.The main reaction occurring during polyester degradation is hydrolysis of steric bonds,leading to molecular weight reduction.The acid produced in the degradation has a catalytic effect on the reaction.Changes in water,acid and steric bond concentrations over time and for different radii of microneedles are investigated.To solve the partial and ordinary differential equations simultaneously,finite difference and Runge–Kutta methods are employed,respectively,with the aid of MATLAB.Correlation of the polymer degradation rate with its molecular weight and molecular weight changes versus time are illustrated.Also,drug diffusivity is related to matrix molecular weight.The molecular weight reduction and accumulative drug release within the system are predicted.In order to validate and assess the proposed model,data series of the hydrolytic degradation of aspirin(180.16 Da)-and albumin(66,000 Da)-loaded PLGA(1:1 molar ratio)are used for comparison.The proposed model is in good agreement with experimental data from the literature.Considering diffusion as themain phenomena and autocatalytic effects in the reaction,the drug release profile is predicted.Based on our results for a microneedle containing drug,we are able to estimate drug release rates before fabrication.展开更多
Poly(lactic-co-glycolic acid)(PLGA)is one of the most representative degradable copolymers and promising drug carriers.In the current paper,the PLGAs with a lactic acid/glycolic acid(LA/GA)molar ratio of 52/48 and var...Poly(lactic-co-glycolic acid)(PLGA)is one of the most representative degradable copolymers and promising drug carriers.In the current paper,the PLGAs with a lactic acid/glycolic acid(LA/GA)molar ratio of 52/48 and various molecular weights were prepared by a melting method.The molecular weight,molecular weight distribution,and thermal stability were determined by 1H NMR and thermogravimetric analysis methods.The results demonstrated that PLGAs with the fixed LA/GA molar ratio(52/48),different molecular weights,and narrow molecular weight distribution could be obtained by solely altering the reaction time.The PLGA films were prepared,and their properties including micro-structure,mechanical property,in-vitro cytotoxicity,and biodegradability were characterized.In combination with the homogeneous microstructures and mechanical properties,the drug-loading and releasing properties of PLGA3.2 films were investigated.The results show that PLGA3.2 film with an LA/GA molar ratio of 52/48 is a promising curcumin carrier.展开更多
基金Project (21176264) supported by the National Natural Science Foundation of ChinaProject (11JJ2010) supported by Hunan Provincial Natural Science Foundation of ChinaProject (LC13076) supported by Undergraduate Innovation Foundation of Central South University,China
文摘Copolymer of maleic acid and acrylic acid (PMA-100), combining with polyvinyl butyral (PVB) ultrafiltration membrane was used for the removal of Mn(II) from waste water by complexation-ultrafiltration. The carboxylic group content of PMA-100 and the rate of complexation reaction were measured. Effects of the mass ratio of PMA-100 to Mn(II) (n), pH, background electrolyte, etc on the rejection rate (R) and permeate flux (J) were investigated. The results show that carboxylic group content of PMA-100 is 9.5 mmol/g. The complexation of Mn(II) with PMA-100 is rapid and completed within 5 min at pH 6.0. Both R and J increase with pH increasing in the range of 2.5-7.0, and R increases with the increase of n at pH 6.0 while J is little affected. The background electrolyte leads to the decrease of R, and CaCl2 has much greater effect on R than NaCl at the same ionic strength.
基金supported by a grant from the National Key Basic Research Program of China,No.2014CB542202 and 2014CB542205the National Natural Science Foundation of China,No.30973095&81371354+2 种基金a grant from Science and Technology Project of Guangzhou,in China,No.12C32121609the Natural Science Foundation of Guangdong Province of China,No.S2013010014697 to Guo JSHong Kong SCI Fund to Wu WT
文摘In this study, we developed a novel artificial nerve graft termed self-assembling peptide nanofiber scaffold (SAPNS)-containing poly(lactic-co-glycolic acid) (PLGA) conduit (SPC) and used it to bridge a 10-mm-long sciatic nerve defect in the rat. Retrograde tracing, behavioral testing and histomorphometric analyses showed that compared with the empty PLGA conduit implantation group, the SPC implantation group had a larger number of growing and extending axons, a markedly increased diameter of regenerated axons and a greater thickness of the myelin sheath in the conduit. Furthermore, there was an increase in the size of the neuromuscular junction and myofiber diameter in the target muscle. These findings suggest that the novel artificial SPC nerve graft can promote axonal regeneration and remyelination in the transected peripheral nerve and can be used for repairing peripheral nerve injury.
文摘Biodegradable chitosan-g-poly (D, L-lactic acid) copolymers were prepared via two methods. (1) The lactide was grafted onto hydroxyl groups of chitosan by using macromolecular initiator sodium of trimethylsilyl-chitosan, (2) poly (D,L-lactic acid)(PLA) with low molecular weight can be linked to the amino group by coupling activated PLA to trimethylsilyl-chitosan. Two graft copolymers had hydrophilic-hydrophobic character and can be applied as carriers for drug delivery.
基金supported by the National Natural Science Foundation of China,No.30973060
文摘Schwann cells, nerve regeneration promoters in peripheral nerve tissue engineering, can be used to repair both the peripheral and central nervous systems. However, isolation and puriifcation of Schwann cells are complicated by contamination with ifbroblasts. Current reported measures are mainly limited by either high cost or complicated procedures with low cell yields or purity. In this study, we collected dorsal root ganglia from neonatal rats from which we obtained highly puriifed Schwann cells using serum-free melanocyte culture medium. The purity of Schwann cells (〉95%) using our method was higher than that using standard medium containing fetal bovine serum. The obtained Schwann cells were implanted into poly(lactic-co-glycolic acid)/chi-tosan conduits to repair 10-mm sciatic nerve defects in rats. Results showed that axonal diameter and area were signiifcantly increased and motor functions were obviously improved in the rat sciatic nerve tissue. Experimental ifndings suggest that serum-free melanocyte culture medium is conducive to purify Schwann cells and poly(lactic-co-glycolic acid)/chitosan nerve conduits combined with Schwann cells contribute to restore sciatic nerve defects.
基金supported by Scientific and Technological Research Council of Turkey(TUBITAK,Grant No.213S148)
文摘Objective: To prepare and characterize poly lactic-co-glycolic acid(PLGA) nanoparticles loaded with soluble leishmanial antigen or autoclaved leishmanial antigen and explore in vitro and in vivo immunogenicity of antigen encapsulated nanoparticles. Methods: Water/oil/water double emulsion technique was employed to synthesize PLGA nanoparticles, and scanning electron microscopy, Fourier transform infrared spectroscopy and Zeta-potential measurements were used to identify the characteristics of nanoparticles. Cytotoxicity of synthetized nanoparticles on J774 macrophage were investigated by MTT assays. To determine the in vitro immunostimulatory efficacies of nanoparticles, griess reaction and ELISA was used to measure the amounts of NO and cytokines. During the in vivo analysis, Balb/c mice were immunized with vaccine formulations, and protective properties of nanoparticles were measured by Leishman Donovan unit in the liver following the infection. Cytokine levels in spleens of mice were determined by ELISA. Results: MTT assay showed that neither soluble leishmanial antigen nor autoclaved leishmanial antigen encapsulated nanoparticles showed cytotoxicity against J774 macrophage cells. Contrary to free antigens, both autoclaved leishmanial antigen-nanoparticle and soluble leishmanial antigen-nanoparticle formulations led to a 10 and 16-fold increase in NO amounts by macrophages, respectively. Leishman Donovan unit calculations revealed that soluble leishmanial antigen-nanoparticles and autoclaved leishmanial antigen-nanoparticles yielded 52% and 64% protection against visceral leishmaniasis in mouse models. Besides, in vitro and in vivo tests demonstrated that by increasing IFN-γ and IL-12 levels and inhibiting IL-4 and IL-10 secretions, autoclaved leishmanial antigen-nanoparticles and soluble leishmanial antigennanoparticles triggered Th1 immune response. Conclusions: Both autoclaved leishmanial antigen-nanoparticles and soluble leishmanial antigen-nanoparticles formulations provide exceptional in vitro and in vivo immunostimulatory activities. Hence, PLGA-based antigen delivery systems are recommended as potential vaccine candidates against visceral leishmaniasis.
基金funded by the Technology Development Project of Jilin Province,No.20110492
文摘Tensile stress and tensile strain directly affect the quality of nerve regeneration after bridging nerve defects by poly(lactic-co-glycolic acid) conduit transplantation and autogenous nerve grafting for sciatic nerve injury. This study collected the sciatic nerve from the gluteus maximus muscle from fresh human cadaver, and established 10-mm-long sciatic nerve injury models by removing the ischium, following which poly(lactic-co-glycolic acid) conduits or autogenous nerve grafts were transplanted. Scanning electron microscopy revealed that the axon and myelin sheath were torn, and the vessels of basilar membrane were obstructed in the poly(lactic-co-glycolic acid) conduit-repaired sciatic nerve following tensile testing. There were no significant differences in tensile tests with autogenous nerve graft-repaired sciatic nerve. Following poly(lactic-co-glycolic acid) conduit transplantation for sciatic nerve repair, tensile test results suggest that maximum tensile load, maximum stress, elastic limit load and elastic limit stress increased compared with autogenous nerve grafts, but elastic limit strain and maximum strain decreased. Moreover, the tendencies of stress-strain curves of sciatic nerves were similar after transplantation of poly(lactic-co-glycolic acid) conduits or autogenous nerve grafts. Results showed that after transplantation in vitro for sciatic nerve injury, poly(lactic-co-glycolic acid) conduits exhibited good intensity, elasticity and plasticity, indicating that poly(lactic-co-glycolic acid) conduits are suitable for sciatic nerve injury repair.
文摘The goal of the present study is to utilize cis-diamminedichloroplatinum (cisplatin) loaded polymer nanoparticles (NPs) to give a controlled, extended, and local drug therapy for the treatment of cancer. We have used biodegradable and biocompatible poly(lactic-co-glycolic acid) (PLGA) to prepare the NPs by adjusting the double emulsion technique using poly(vinylalcohol) as a surface active agent. The PLGA NPs were characterized for particle size and shape, controlled release of cisplatin, and degradation. Cisplatin solubility in deionized water was increased up to 4 mg/mL by simply changing the solution parameters. Cisplatin encapsulated NPs were incubated in phosphate buffered saline (PBS) at 37?C to study the release kinetics of cisplatin. Cisplatin was released in a sustained manner with less than 20% release during a 3-day period followed by 50% release during a 21-day period. A degradation study of PLGA NPs demonstrated the loss of spherical shape during a 21-day period. We also examined the cisplatin sensitive A2780 cell apoptosis when cells were incubated with cisplatin encapsulated PLGA NPs. A large number of cell apoptosis occurred as a result of cisplatin release from the PLGA NPs. These results suggest that cisplatin encapsulated PLGA NPs can be used to treat the cancer cells by injecting them into a localized site minimizing the side effects.
文摘A novel kind of copolymer with ABA-type block structure was synthesized by anionic ring-opening polymerization of beta-butyrolactone (beta-BL) in the presence of a PEG-based dicarboxylates as macroinitiators which were prepared by the esterification of aliphatic cyclic anhydride and poly(ethylene glycol) (PEG) oligomers (M-n = 2000, 4000 and 6000) and conversion of potassium dicarboxylates. The resultant copolymers as well as the intermediates were characterized by IR, H-1-NMR and GPC.
基金the National Natural Science Foundation of China,No.30471759
文摘BACKGROUND: Nogo A antigen is the major inhibiting factor blocking regeneration of the injured spinal cord. Neutralizing Nogo A antigens using Nogo A antibodies may help promote neurite regeneration and nervous function recovery. For successful regeneration, sustained release of the antibody from a biodegradable material loaded with Nogo A antibodies to the injury site is required. OBJECTIVE: To compare the therapeutic effects of poly lactic-co-glycolic acid (PLGA)-Nogo A antibody delayed-release microspheres and Nogo A antibody alone on spinal regeneration in Sprague-Dawley rats with complete transverse injury to the spinal cord. DESIGN, TIME AND SETTING: A randomized, controlled animal trial was performed at the Pharmacological Laboratory of West China Center of Medical Sciences, Sichuan University, between October 2007 and January 2008. MATERIALS: Goat anti-rat Nogo A monoclonal antibody was purchased from Santa, American; goat anti-rat neurofilament 200 monoclonal antibody was from Zhongshan Goldenbridge, Beijing, China; PLGA-Nogo A antibody delayed-release microspheres were provided by the College of Pharmacy, Sichuan University. METHODS: A total of 36 adult female Sprague Dawley rats were used to establish models of completely transected spinal cord injury, at T10. Animals were randomly divided into three groups (n=12): model, Nogo A antibody alone, and Nogo A antibody delayed-release microsphere groups. After transverse injury of the spinal cord, 50 μ L normal saline solution, 50 μL normal saline solution containing 50μL g Nogo A antibody, and 50 μL normal saline solution containing 50 μg Nogo A antibody microspheres were administered to the respective groups at the injury site. MAIN OUTCOME MEASURES: The expression of Nogo A and neurofilament 200 in injured spinal cord was tested immunohistochemically, and motor function of rats was assessed by Basso-Beattie-Bresnahan (BBB) locomotor rating scale. RESULTS: Four weeks after injury, expression of Nogo A in microsphere group was significantly less than model and Nogo A antibody alone groups (P 〈 0.05); while there was no significant difference between model and Nogo A antibody alone groups (P 〉 0.05). Ten weeks after injury, microsphere group showed a significantly greater expression of neurofilament 200 than model and Nogo A antibody alone groups (P 〈 0.05); while no significant difference was found between model and Nogo A antibody alone groups (P 〉 0.05). At postoperative weeks 5 and 6, the score of BBB locomotor rating scale in microsphere group was significantly greater than the model group (P 〈 0.05), and at postoperative weeks 7 10, the score was much greater than model and Nogo A antibody alone groups (P 〈 0.05). CONCLUSION: Nogo A antibody delayed-release microspheres decreased Nogo A expression, increased neurofilament 200 expression in the injured spinal cord of rats, and promoted recovery of motor function through sustained drug release over a long-term period.
文摘BACKGROUND: A degradable poly(lactic-co-glycolic acid) (PLGA) scaffold has been used to construct a degradable porous scaffold. This template can simulate the in vivo microenvironment and promote tissue formation. OBJECTIVE: To observe the histopathological changes during degeneration and regeneration of the intervertebral disc, and to analyze the effects of a PLGA scaffold on nerve fiber ingrowth into the lesion in vivo. DESIGN, TIME AND SETTING: A randomized, controlled animal experiment was performed at the Orthopaedic Laboratory, Clinic Medical Research Institution, Sir Run Run Shaw Hospital, Zhejiang University, from December 2007 to July 2008. MATERIALS: PLGA (China Textile Academy); growth-associated protein-43 (Life-span, USA); and protein gene product 9.5 antibody (AbD, United Kingdom) were used in this study. METHODS: Three consecutive segments of the intervertebral disc of thirty-two healthy adult male New Zealand rabbits were exposed, comprising L3-4, L4-5 and L5-6. Experimental intervertebral disc (L4-5 and L5-6) models were established by two different methods. In the test (trephine + scaffold) group, a 5-mm deep hole was drilled into the annulus fibrosus using a 3-mm diameter trephine, and the PLGA scaffold was implanted into the hole. In the acupuncture group, the remaining experimental intervertebral disc annulus fibrosus was damaged using a 16G needle at a depth of 5 mm. The L3-4 disc served as a control. MAIN OUTCOME MEASURES: Intervertebral disc degeneration was assessed using radiography, magnetic resonance imaging, and histological examination at various time points post-surgery. Nerve fiber ingrowth into the degenerated intervertebral disc was observed using immunohistochemical staining for growth-associated protein-43 and protein gene product 9.5. RESULTS: Compared with the normal controls, the heights of the damaged intervertebral discs were decreased, and T2 signal intensity was decreased in the test and acupuncture groups 2 weeks post-surgery. Intervertebral disc degeneration was faster in the test group than in the acupuncture group. PLGA was coated with newly formed tissue, gradually degraded, and absorbed, and could induce tissue ingrowth deep into the annulus fibrosus. Results of immunohistochemical staining showed that nerve fibers were distributed in newly formed tissue in the test group, and in the superficial layer or surrounding scar tissue in the acupuncture group. CONCLUSION: A porous PLGA scaffold provides an important biological channel to induce nerve fiber ingrowth deep into the degenerated intervertebral disc.
文摘The effect of Argon ion irradiation to the surface properties of poly(lactic-co-glycolic) acid (PLGA) was studied. A beam of 170 keV Argon ions was implanted at different fluencies (1 × 1012, 1 × 1013, 1 × 1014, and 1 × 1015 ions/cm2). X-ray photoelectron spectroscopy (XPS) was used to analyze the evolution of the bonding microstructure of PLGA due to irradiation. Surface morphology was monitored using atomic force microscopy (AFM). AFM analysis shows that film roughness increased to maximum at the dose of 1 × 1014 ions/cm2 where the formations of hillocks were also detected. Hydrophilicity of PLGA is important for their applications in biomedicine such as bioscaffolds. Hydrophilicity was monitored using water contact angle measurements for both unmodified and ion-modified PLGA. It was observed that hydrophilicity of PLGA changes with the ion irradiation. This demonstrates that ion irradiation can be an alternative approach to control hydrophilicity of PLGA. PLGA scaffolds modified with ion irradiation could therefore be more suitable for the biomedical applications.
基金the National Metallurgical Laboratory,Jamshedpur for their kind support
文摘This study aims to beneficiate low grade goethitic iron ore fines using a selective flocculation process. Selective flocculation studies were conducted using different polymers such as starch amylopectin(AP), poly acrylic acid(PAA), and a graft copolymer(AP-g-PAA). The obtained results were analyzed; they indicate the enhancement of the iron ore grade from 58.49% to 67.52% using AP-g-PAA with a recovery of 95.08%. In addition, 64.45% Fe with a recovery of 88.79% was obtained using AP. Similarly, using PAA, the grade increased to 63.46% Fe with a recovery of 82.10%. The findings are also supported by characterizing concentrates using X-ray diffraction(XRD) and electron probe microanalysis(EPMA) techniques.
文摘In this study a low molecular weight triblock copolymer derived fromε-caprolactone and tetrahydrofuran was used as a non-reactive compatibilizer of immiscible PLA/PCL blends.Ternary blends with 0,1.5 wt%,3 wt%and 5 wt% copolymer and about 75 wt%PLA were prepared by single screw extrusion and characterized by scanning electron microscopy(SEM),differential scanning calorimetry(DSC),dynamic mechanical analysis(DMA),tensile and Izod impact testing.SEM micrographs showed that the size of the dispersed PCL domains was practically constant regardless of copolymer concentration.This result can be explained by the low shear rate employed during processing step and a decrease of PCL viscosity by presence of the triblock copolymer.However,when the copolymer concentration increased,strain at break of PLA/PCL blends also increased.PLA/PCL blend with 0 wt% copolymer presented 2%strain at break,whereas PLA/PCL blend with 5 wt%copolymer exhibited 90%.
基金supported by the National Natural Science Foundation of China,No.81371687,81171457
文摘We have designed a novel nerve guidance conduit(NGC) made from silk fibroin and poly(lactic-co-glycolic acid) through electrospinning and weaving(ESP-NGCs). Several physical and biological properties of the ESP-NGCs were assessed in order to evaluate their biocompatibility. The physical properties, including thickness, tensile stiffness, infrared spectroscopy, porosity, and water absorption were determined in vitro. To assess the biological properties, Schwann cells were cultured in ESP-NGC extracts and were assessed by morphological observation, the MTT assay, and immunohistochemistry. In addition, ESP-NGCs were subcutaneously implanted in the backs of rabbits to evaluate their biocompatibility in vivo. The results showed that ESP-NGCs have high porosity, strong hydrophilicity, and strong tensile stiffness. Schwann cells cultured in the ESP-NGC extract fluids showed no significant differences compared to control cells in their morphology or viability. Histological evaluation of the ESP-NGCs implanted in vivo indicated a mild inflammatory reaction and high biocompatibility. Together, these data suggest that these novel ESP-NGCs are biocompatible, and may thus provide a reliable scaffold for peripheral nerve repair in clinical application.
基金This study was financially supported by the National Natural Science Foundation of China(Grant Nos.51973216,51873207,51803006,and 51833010)the Science and Technology Development Program of Jilin Province(Grant No.20200404182YY)+1 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2019005)the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology)(Grant No.2020-KF-5).
文摘Research and development of the ideal artificial bone-substitute materials to replace autologous and allogeneic bones for repairing bone defects is still a challenge in clinical orthopedics.Recently,poly(lactic-co-glycolic acid)(PLGA)-based artificial bone-substitute materials are attracting increasing attention as the benefit of their suitable biocompatibility,degradability,mechanical properties,and capabilities to promote bone regeneration.In this article,we comprehensively review the artificial bone-substitute materials made from PLGA or the composites of PLGA and other organic and inorganic substances,elaborate on their applications for bone regeneration with or without bioactive factors,and prospect the challenges and opportunities in clinical bone regeneration.
基金supported in part by grants from the National Key Technologies R&D Program for New Drugs of China (No. 2012ZX09301003-001-009)the Beijing Natural Science Foundation of China (No.7154230)
文摘Non-small cell lung cancer(NSCLC) accounts for about 85% of all lung cancers. Traditional chemotherapy for this disease leads to serious side effects. Here we prepared an inhalable oridonin-loaded poly(lactic-co-glycolic)acid(PLGA) large porous microparticle(LPMP) for in situ treatment of NSCLC with the emulsion/solvent evaporation/freeze-drying method. The LPMPs were smooth spheres with many internal pores. Despite a geometric diameter of 10 mm, the aerodynamic diameter of the spheres was only 2.72 mm, leading to highly efficient lung deposition. In vitro studies showed that most of oridonin was released after 1 h, whereas the alveolar macrophage uptake of LPMPs occurred after 8 h, so that most of oridonin would enter the surroundings without undergoing phagocytosis. Rat primary NSCLC models were built and administered with saline, oridonin powder, gemcitabine, and oridonin-loaded LPMPs via airway, respectively. The LPMPs showed strong anticancer effects. Oridonin showed strong angiogenesis inhibition and apoptosis. Relevant mechanisms are thought to include oridonin-induced mitochondrial dysfunction accompanied by low mitochondrial membrane potentials, downregulation of BCL-2 expressions, upregulation of expressions of BAX, caspase-3 and caspase-9. The oridonin-loaded PLGALPMPs showed high anti-NSCLC effects after pulmonary delivery. In conclusion, LPMPs are promising dry powder inhalations for in situ treatment of lung cancer.
文摘The aim of the present study was to develop a novel long-acting Poly(lactic-co-glycolic acid)(PLGA)-based microspheres formulation of Bisdemethoxycurcum(BDMC) by emulsionsolvent evaporation method. Meanwhile, the effects of the volume ratio of the dispersed phase and continuous phase, the concentration of PLGA and PVA, the theoretical drug loading and stirring speed were investigated. The mean diameter of the microspheres was 8.5 μm and the size distribution was narrow. The encapsulation efficiency(EE) and drug loading efficiency(DLE) of BDME loaded PLGA microspheres(BDMC-PLGA-MS) was 94.18% and 8.14%,respectively. In an in vitro study of drug release, it can be concluded that the BDMC-PLGAMS exhibited sustained and long-term release properties for 96 h. Stability studies suggested that the microspheres we prepared had a very good stability. Furthermore, the results of an in vivo study indicated that the BDMC-PLGA-MS had sustained release effect and was mainly distributed in the lung tissue, and less distribution in other tissues, which indicated that microspheres could be an effective parenteral carrier for the delivery of BDMC in lung cancer treatment.
基金financially supported by the National Natural Science Foundation of China(Nos.11272038,50803032,11032012,10925208,11202017 and 11120101001)the Fundamental Research Funds for the Central Universities(No.YWF-13-T-RSC-024)+2 种基金the 111 Project(No.B13003)the International Joint Research Center of Aerospace Biotechnology and Medical Engineering,Ministry of Science and Technology of Chinathe Program of Pearl River Young Talents of Science and Technology in Guangzhou,China(No.2013Z2200010)
文摘Chitosan-graft-poly(lactic acid) (CS-g-PLA) copolymer was synthesized through emulsion self-assembly in a water-in-oil (W/O) microemulsion. The water phase was composed of CS aqueous solution, while the oil phase was made up of PLA in chloroform. The W/O microemulsion was fabricated in the presence of surfactant span-80 and the self-assembly was performed between PLA and CS under the effect of N-(3-dimethylaminopropyl)-N'ethylcarbodiimide hydrochloride (EDC'HCI). FTIR and IH-NMR analysis indicated PLA was grafted onto the backbone of CS via the reaction between the carboxyl groups in PLA and the amino groups in CS. 1H-NMR characterization further revealed the grafting content of PLA was 16%. The obtained CS-g-PLA could self-assemble to form micelles, their size distributed in the range of 125-375 nm with average diameter of 142 nm. The present design integrates the favorable biological properties of CS and the excellent mechanical properties of PLA, which makes CS-g-PLA copolymer a promising candidate as a carrier for targeted bioactive molecules delivery.
文摘Transdermal drug delivery systems have overcome many limitations of other drug administration routes,such as injection pain and first-pass metabolism following oral route,although transdermal drug delivery systems are limited to drugs with low molecular weight.Hence,new emerging technology allowing high molecular weight drug delivery across the skin—known as‘microneedles’—has been developed,which creates microchannels that facilitate drug delivery.In this report,drug-loaded degradable conic microneedles are modeled to characterize the degradation rate and drug release profile.Since a lot of data are available for polylactic acid-co-glycolic acid(PLGA)degradation in the literature,PLGA of various molecular weights-as a biodegradable polymer in the polyester family-is used for modeling and verification of the drug delivery in themicroneedles.The main reaction occurring during polyester degradation is hydrolysis of steric bonds,leading to molecular weight reduction.The acid produced in the degradation has a catalytic effect on the reaction.Changes in water,acid and steric bond concentrations over time and for different radii of microneedles are investigated.To solve the partial and ordinary differential equations simultaneously,finite difference and Runge–Kutta methods are employed,respectively,with the aid of MATLAB.Correlation of the polymer degradation rate with its molecular weight and molecular weight changes versus time are illustrated.Also,drug diffusivity is related to matrix molecular weight.The molecular weight reduction and accumulative drug release within the system are predicted.In order to validate and assess the proposed model,data series of the hydrolytic degradation of aspirin(180.16 Da)-and albumin(66,000 Da)-loaded PLGA(1:1 molar ratio)are used for comparison.The proposed model is in good agreement with experimental data from the literature.Considering diffusion as themain phenomena and autocatalytic effects in the reaction,the drug release profile is predicted.Based on our results for a microneedle containing drug,we are able to estimate drug release rates before fabrication.
基金Major Research and Development Project of Shandong Province,China(No.2019JZZY011118)Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province,China and the Project of the Jinan Science and Technology Bureau,China(No.2019GXRC021).
文摘Poly(lactic-co-glycolic acid)(PLGA)is one of the most representative degradable copolymers and promising drug carriers.In the current paper,the PLGAs with a lactic acid/glycolic acid(LA/GA)molar ratio of 52/48 and various molecular weights were prepared by a melting method.The molecular weight,molecular weight distribution,and thermal stability were determined by 1H NMR and thermogravimetric analysis methods.The results demonstrated that PLGAs with the fixed LA/GA molar ratio(52/48),different molecular weights,and narrow molecular weight distribution could be obtained by solely altering the reaction time.The PLGA films were prepared,and their properties including micro-structure,mechanical property,in-vitro cytotoxicity,and biodegradability were characterized.In combination with the homogeneous microstructures and mechanical properties,the drug-loading and releasing properties of PLGA3.2 films were investigated.The results show that PLGA3.2 film with an LA/GA molar ratio of 52/48 is a promising curcumin carrier.