期刊文献+
共找到4,550篇文章
< 1 2 228 >
每页显示 20 50 100
Effect of a Novel Nucleating Agent on Isothermal Crystallization of Poly(L-lactic acid) 被引量:7
1
作者 WEN Liang XIN Zhong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第6期899-904,共6页
The effect of a novel active nucleating agent(TBC8-eb) on the isothermal crystallization of poly(L-lactic acid) (PLLA) was studied by differential scanning calorimetry(DSC) and Fourier transform infrared spectroscopy(... The effect of a novel active nucleating agent(TBC8-eb) on the isothermal crystallization of poly(L-lactic acid) (PLLA) was studied by differential scanning calorimetry(DSC) and Fourier transform infrared spectroscopy(FTIR) . The analysis on kinetics demonstrates that TBC8-eb can not only accelerate the crystallization rate but also transform most of the original spherulite crystals of PLLA into sheaf-like crystals. Furthermore,the free energy of folding(σe) of PLLA and PLLA with TBC8-eb is 0.15 and 0.06 J·m-2,respectively,which suggests that the addition of TBC8-eb favors the regular folding of molecule chains in the crystallization of PLLA,improv-ing its crystallization rate. The FTIR results show that TBC8-eb can accelerate the conformational ordering of PLLA in the isothermal crystallization. The conformational ordering of PLLA nucleated with TBC8-eb begins with the interchain interaction of CH3,and then a short helix emerges where a couple of CH3 groups interact. 展开更多
关键词 CRYSTALLIZATION poly(l-lactic acid) nucleating agent
下载PDF
Sorption and Diffusion Behavior of Carbon Dioxide into Poly(l-lactic acid) Films at Elevated Pressures 被引量:1
2
作者 余金鹏 唐川 +2 位作者 关怡新 姚善泾 朱自强 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第11期1296-1302,共7页
Equilibrium sorption amount, desorption diffusion coefficients and sorption diffusion coefficients of CO2 in poly(l-lactic acid) (PLLA) films at elevated pressures were determined by the gravimetric method, in whi... Equilibrium sorption amount, desorption diffusion coefficients and sorption diffusion coefficients of CO2 in poly(l-lactic acid) (PLLA) films at elevated pressures were determined by the gravimetric method, in which the Fick's diffusion model was applied to analyze both the desorption and sorption processes. The equilibrium sorption amount of CO2 in PLLA increased with lowering temperature and elevating pressure at the temperature range from 40 to 60 ℃ and pressure from 10^4 to 2x10^4 kPa. Desorption diffusion coefficients were greatly influenced by the equilibrium sorption amount, and they were in the same order of magnitude as the sorption diffusion coefficients. The scan electron microscope (SEM) photos demonstrated that there was no foaming phenomenon of the PLLA film during desorption and sorption processes. The XRD spectra implied that the crystalline degree of PLLA film decreased after CO2 processing. It was concluded that PLLA polymer could be well swollen and plasticized by supercritical CO2. 展开更多
关键词 supercritical solution impregnation carbon dioxide poly (/-lactic acid) SORPTION DIFFUSION
下载PDF
Multi-porous electroactive poly(L-lactic acid)/ polypyrrole composite micro/nano fibrous scaffolds promote neurite outgrowth in PC12 cells
3
作者 Qiaozhen Yu Shuiling Xu +1 位作者 Kuihua Zhang Yongming Shan 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第1期31-38,共8页
In this study, poly(L-lactic acid)/ammonium persulfate doped-polypyrrole composite fibrous scaffolds with moderate conductivity were produced by combining electrospinning with in situ polymerization. PC12 cells were... In this study, poly(L-lactic acid)/ammonium persulfate doped-polypyrrole composite fibrous scaffolds with moderate conductivity were produced by combining electrospinning with in situ polymerization. PC12 cells were cultured on these fibrous scaffolds and their growth following electrical stimulation (0-20.0 μA stimulus intensity, for 1-4 days) was observed using inverted light microscopy, and scanning electron microscopy coupled with the MTT cell viability test. The results demonstrated that the poly(L-lactic acid)/ammonium persulfate doped-polypyrrole fibrous scaffold was a dual multi-porous micro/nano fibrous scaffold. An electrical stimulation with a current intensity 5.0- 10.0 μAfor about 2 days enhanced neuronal growth and neurite outgrowth, while a high current intensity (over 15.0 μA) suppressed them. These results indicate that electrical stimulation with a moderate current intensity for an optimum time frame can promote neuronal growth and neurite outgrowth in an intensity- and time-dependent manner. 展开更多
关键词 neural regeneration tissue engineering poly(l-lactic acid)/polypyrrole composite multi-porousfibrous scaffold electrical stimulation PC12 cell lines AXON electric spinning grants-supportedpaper photographs-containing paper neuroregeneration
下载PDF
Effect of Process Parameters on Co-precipitation of Paclitaxel and Poly(L-lactic Acid) by Supercritical Antisolvent Process
4
作者 李文锋 刘贵金 +3 位作者 李黎仙 伍娟 吕扬效 江燕斌 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第4期803-813,共11页
Paclitaxel(PTX) is an effective anticancer drug with poor solubility in water.Recently,much effort has been devoted into alternative formulations of PTX for improving its aqueous solubility.In this study,PTX and poly(... Paclitaxel(PTX) is an effective anticancer drug with poor solubility in water.Recently,much effort has been devoted into alternative formulations of PTX for improving its aqueous solubility.In this study,PTX and poly(L-lactic acid)(PLLA) were co-precipitated by a supercritical antisolvent(SAS) process using dichloromethane(DCM) and the mixtures of DCM/ethanol(EtOH) or DCM/dimethyl sulfoxide(DMSO) as the solvent,with super-critical carbon dioxide as the antisolvent.The effects of solvent,solvent ratio,temperature,pressure,polymer con-centration and solution flow rate on particle morphology,mass median diameter(Dp50) and PTX loading were in-vestigated using single-factor method.The particle samples were characterized using X-ray diffraction(XRD),scanning electron microscopy(SEM),laser diffraction particle size analyzer and high pressure liquid chromatogra-phy(HPLC).XRD results indicate that the micronized PTX is dispersed into the PLLA matrix in an amorphous form.SEM indicates that the solvent and the solvent ratio have great effect on the particle morphologies,and particle morphology is good at the volume ratio of DCM/EtOH of 50/50.For the mixed DCM/EtOH solvent,Dp50 increases with the increase of the temperature,pressure,PLLA concentration and solution flow rate,and PTX loading in-creases with pressure.Suitable operating conditions for the experimental system are as follows:DCM/EtOH 50/50(by volume),35 ℃,10-12 MPa,PLLA concentration of 5 g·L-1 and solution flow rate of 0.5 ml·min-1. 展开更多
关键词 supercritical antisolvent PACLITAXEL poly(l-lactic acid) CO-PRECIPITATION drug delivery system
下载PDF
Synthesis of the Biomimetic Polymer: Aliphatic Diamine and RGDS Modified Poly(d,l-lactic acid) 被引量:6
5
作者 Xu Feng NIU Yuan Liang WANG +2 位作者 Yan Feng LUO Jun PAN Li Xia GUO 《Chinese Chemical Letters》 SCIE CAS CSCD 2005年第8期1035-1038,共4页
A novel poly(d, /-lactic acid) (PDLLA) based biomimetic polymer was synthesized by grafting maleic anhydride, butanediamine and arg-gly-asp-ser (RGDS) peptides onto the backbone of PDLLA, aiming to overcome the ... A novel poly(d, /-lactic acid) (PDLLA) based biomimetic polymer was synthesized by grafting maleic anhydride, butanediamine and arg-gly-asp-ser (RGDS) peptides onto the backbone of PDLLA, aiming to overcome the acidity and auto-accelerating degradation of PDLLA during degradation and to improve its biospecificity and biocompatibility. The synthetic copolymer was characterized by FTIR, ^13C NMR and amino acid analyzer (AAA). 展开更多
关键词 poly(d l-lactic acid) maleic anhydride butanediamine arg-gly-asp-ser modification.
下载PDF
Synthesis and Characterization of Chitosan-g-poly- (D, L-lactic acid) Copolymer 被引量:2
6
作者 HuaYANG ShaoBingZHOU XianMoDENG 《Chinese Chemical Letters》 SCIE CAS CSCD 2005年第1期123-126,共4页
Biodegradable chitosan-g-poly (D, L-lactic acid) copolymers were prepared via two methods. (1) The lactide was grafted onto hydroxyl groups of chitosan by using macromolecular initiator sodium of trimethylsilyl-chit... Biodegradable chitosan-g-poly (D, L-lactic acid) copolymers were prepared via two methods. (1) The lactide was grafted onto hydroxyl groups of chitosan by using macromolecular initiator sodium of trimethylsilyl-chitosan, (2) poly (D,L-lactic acid)(PLA) with low molecular weight can be linked to the amino group by coupling activated PLA to trimethylsilyl-chitosan. Two graft copolymers had hydrophilic-hydrophobic character and can be applied as carriers for drug delivery. 展开更多
关键词 poly (D l-lactic acid) CHITOSAN graft copolymer coupling macromolecular initiator.
下载PDF
Synthesis and Characterization of a Novel Biomaterial: Maleic Anhydride-modified Poly(dl-lactic acid) 被引量:8
7
作者 YanFengLUO YuanLiangWANG XuFengNIU JunPAN LiangPingSHI 《Chinese Chemical Letters》 SCIE CAS CSCD 2004年第5期521-524,共4页
A novel modified poly(dl-lactic acid) (PDLLA) was obtained by covalently grafting of maleic anhydride onto the backbone of PDLLA, attempting to improve PDLLA’s hydrophilicity and cell affinity and to provide reactive... A novel modified poly(dl-lactic acid) (PDLLA) was obtained by covalently grafting of maleic anhydride onto the backbone of PDLLA, attempting to improve PDLLA’s hydrophilicity and cell affinity and to provide reactive groups for further chemical modification. FTIR, 13C NMR and DSC were used to characterize the maleic anhydride-modified PDLLA. 展开更多
关键词 poly(dl-lactic acid) maleic anhydride MODIFICATION characterization.
下载PDF
Transplantation of Nogo-66 receptor gene-silenced cells in a poly(D,L-lactic-co-glycolic acid) scaffold for the treatment of spinal cord injury 被引量:8
8
作者 Dong Wang Yuhong Fan Jianjun Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第8期677-685,共9页
Inhibition of neurite growth, which is in large part mediated by the Nogo-66 receptor, affects neural regeneration following bone marrow mesenchymal stem cell transplantation. The tissue engineering scaffold poly(D,L... Inhibition of neurite growth, which is in large part mediated by the Nogo-66 receptor, affects neural regeneration following bone marrow mesenchymal stem cell transplantation. The tissue engineering scaffold poly(D,L-lactide-co-glycolic acid) has good histocompatibility and can promote the growth of regenerating nerve fibers. The present study used small interfering RNA to silence Nogo-66 receptor gene expression in bone marrow mesenchymal stem cells and Schwann cells, which were subsequently transplanted with poly(D,L-lactide-co-glycolic acid) into the spinal cord lesion regions in rats. Simultaneously, rats treated with scaffold only were taken as the control group. Hematoxylin-eosin staining and immunohistochemistry revealed that at 4 weeks after transplantation, rats had good motor function of the hind limb after treatment with Nogo-66 receptor gene-silenced ceils prus the poly(O,L-lactide-co-glycolic acid) scaffold compared with rats treated with scaffold only, and the number of bone marrow mesenchymal stem cells and neuron-like cells was also increased. At 8 weeks after transplantation, horseradish peroxidase tracing and transmission electron microscopy showed a large number of unmyelinated and myelinated nerve fibers, as well as intact regenerating axonal myelin sheath following spinal cord hemisection injury. These experimental findings indicate that transplantation of Nogo-66 receptor gene-silenced bone marrow mesenchymal stem cells and Schwann cells plus a poly(D,L-lactide-co-glycolic acid) scaffold can significantly enhance axonal regeneration of spinal cord neurons and improve motor function of the extremities in rats following spinal cord injury. 展开更多
关键词 neural regeneration spinal cord injury bone marrow mesenchymal stem cells Schwann cells poly(D L-lactide-co-glycolic acid) Nogo-66 receptor gene rats gene silencing grants-supportedpaper photographs-containing paper neuroregeneration
下载PDF
Preparation and Properties of Bio-Based Flame Retardant L-APP/Poly(L-lactic acid)Composites 被引量:2
9
作者 Qionglin Luo Mingliang Wang +4 位作者 Hui Zhang Yuejun Ouyang Hongwei Lin You Shu Shengpei Su 《Journal of Renewable Materials》 SCIE EI 2021年第12期2067-2076,共10页
Poly(L-lactic acid)(PLLA)is a thermoplastic material with complete degradability,high biocompatibility and excellent mechanical properties.It can replace petroleum-based polymers are currently being used in the fields... Poly(L-lactic acid)(PLLA)is a thermoplastic material with complete degradability,high biocompatibility and excellent mechanical properties.It can replace petroleum-based polymers are currently being used in the fields of packaging,agriculture,textiles,medical and so on.However,PLLA’s extremely flammability greatly limits its wider application.An bio-based flame retardant L-APP/PLLA composites was prepared by melt blending of the L-APP and PLLA.The morphology,impact properties,thermal properties and flame retardant properties of composites were investigated by field emission scanning electron microscope(SEM),impact tester,differential scanning calorimeter(DSC),thermogravimetric analyzer(TGA),limiting oxygen indexer(LOI)and horizontalvertical burning tester.The results showed that the degree of crystallization(X_(c))and LOI of L-APP/PLLA composites increased as increasing of L-APP content.What’s more,the impact strength first increased and then decreased,the glass transition temperature(T_(g))and melting temperature(T_(m))do not changed significantly.The impact strength of composites was 9.1 kJ/m^(2) at a 5 wt%loading for L-APP,which was the highest level.When the content of L-APP was 20%,the LOI was 30.8%,the Xc was 42.3%and the UL-94 level was V-0.This research can promote the value-added utilization of lignin and the application of PLLA in the fields of flame retardant materials. 展开更多
关键词 Bio-based flame retardant LIGNIN ammonium polyphosphate poly(l-lactic acid)
下载PDF
Efficient and selective upcycling of waste polylactic acid into acetate using nickel selenide
10
作者 Bing Lan Yinfang Chen +4 位作者 Nantian Xiao Na Liu Chao Juan Chuan Xia Fan Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期575-584,I0012,共11页
The conversion of waste polylactic acid(PLA)plastics into high-value-added chemicals through electrochemical methods is a promising and sustainable approach.However,developing efficient and highly selective catalysts ... The conversion of waste polylactic acid(PLA)plastics into high-value-added chemicals through electrochemical methods is a promising and sustainable approach.However,developing efficient and highly selective catalysts for lactic acid oxidation reaction(LAOR)and understanding the reaction process are challenging.Here,we report the electrooxidation of waste PLA to acetate at a high current density of 100 mA cm-2 with high Faraday efficiency(~95%)and excellent stability(>100 h)over a nickel selenide nanosheet catalyst.In addition,a total Faraday efficiency of up to 190%was achieved for carboxylic acids,including acetic acid and formic acid,by coupling with the cathodic CO_(2) reduction reaction.In situ experimental results and theoretical simulations revealed that the catalytic activity center of LAOR was dynamically formed NiOOH species,and the surface-adsorbed SeO_(x) species accelerated the formation of Ni~(3+)species,thus promoting catalytic activity.The mechanism of lactic acid electrooxidation was further elucidated.Lactic acid was dehydrogenated to produce pyruvate first and then formed CH_3CO due to preferential C-C bond cleavage,resulting in the presence of acetate.This work demonstrated a sustainable method for recycling waste PLA and CO_(2) into high-value-added products. 展开更多
关键词 Waste plastic upcycling poly(lactic acid) Lactic acid electro-oxidation Acetic acid
下载PDF
Design,synthesis and characterization of novel biodegradable macrodiols based on poly(DL-lactic acid) and poly(p-dioxanone) 被引量:2
11
作者 Chan Yu Zhang Yan Feng Luo +3 位作者 Su Jun Wang Zhao Liu Yuan Liang Wang Zhi Qing Liang 《Chinese Chemical Letters》 SCIE CAS CSCD 2009年第6期743-746,共4页
Integrating poly(lactic acid) (PLA), glycolic acid (GA) and ethylene glycol (EG) will hopefully result in a novel copolymer that combines such advantages as fastened and controllable release rate and improved ... Integrating poly(lactic acid) (PLA), glycolic acid (GA) and ethylene glycol (EG) will hopefully result in a novel copolymer that combines such advantages as fastened and controllable release rate and improved flexibility together with good biocompatibility. In this study, p-dioxanone (PDO) was employed to copolymerize with DL-lactide (LA) via ring-opening melt polymerization using Sn(Oct)2 as an initiator and ethylene glycol as a co-initiator. The obtained degradable macrodiols (HO-P(LA-co-PDO)-OH) were just such a copolymer consisting of PLA, GA and EG. 1HNMR was employed to characterize the copolymers, and the effect of PDO/LA molar ratios in the feedstock on the molecular weights of HO-P(LA-co-PDO)-OH was investigated by means of endhydroxyl analysis, 1H NMR or GPC-MALLs. The results confirmed the successful synthesis of HO-P(LA-co-PDO)-OH and revealed that one end-hydroxyl of the micarodiols was donated by LA or PDO and the other one by the co-initiator EG. In addition, the molecular weights of HO-P(LA-co-PDO)-OH increased with decreasing PDO/LA ratios. 展开更多
关键词 Macrodiol poly(lactici acid) P-DIOXANONE Ethylene glycol Drug delivery carder Bone morphogenetic protein
下载PDF
SURFACE OF GELATIN MODIFIED POLY(L-LACTIC ACID)FILM 被引量:1
12
作者 姚康德 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2003年第3期277-284,共8页
In this paper, the surface structure of poly(L-lactic acid) (PLLA) film modified with gelatin was investigated. ThePLLA film specimens were treated directly with aqueous alkali solution to provide their surfaces with ... In this paper, the surface structure of poly(L-lactic acid) (PLLA) film modified with gelatin was investigated. ThePLLA film specimens were treated directly with aqueous alkali solution to provide their surfaces with carboxyl groups, sothat these functional groups could become the reactive sites for gelatin immobilization. The functional groups of the PLLAfilms were identified by ATR-FTIR spectra and XPS spectra, the changes in surface morphology were observed by usingenvironmental scanning electron microscopy (ESEM), and the hydrophilicity of modified PLLA films was examined bywater contact angle measurement. Experimental results showed that the gelatin was immobilized with water-solublecarbodiimide (EDC) onto the PLLA film's surfaces, and the gelatin content on the polymer surface was related to carboxylicgroup formed in the controlled hydrolysis process. Rough surfaces caused by hydrolysis will predominantly favor the adhesion and growth of cell; and the hydrophilicity of these surfaces after the modification procedure is enhanced. 展开更多
关键词 GELATIN poly(l-lactic acid) Surface modification
下载PDF
Melt Synthesis and Characterization of Poly(L-lactic Acid) Chain Linked by Multifunctional Epoxy Compound 被引量:1
13
作者 王远亮 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第5期774-779,共6页
High molecular weight(Mw) poly(L-lactic acid)s(PLLAs) were synthesized using multifunctional epoxy compound(Joncryl-ADR4370) as chain extender. The products were characterized by gel permeation chromatography... High molecular weight(Mw) poly(L-lactic acid)s(PLLAs) were synthesized using multifunctional epoxy compound(Joncryl-ADR4370) as chain extender. The products were characterized by gel permeation chromatography(GPC) and spectroscopy(1HNMR and FTIR). The results indicated that the Mw of PLLA increased with the increasing of the ratio of epoxy compound and the extending of reaction time. The highest Mw of PLLA reached 360 000 g/mol when the ratio of epoxy compound was 1.5 wt%. However, the reactants turned to cross-linking when the ratio of epoxy compound was over 1.5 wt%. Differential scanning calorimetry(DSC) measurements demonstrated that the glass transition(Tg) and melting temperatures(Tm) of products increased slightly as the increase of the molecular weight. Analysis of the hydrolytic degradation in vitro showed that the branched PLLA possessed the quicker degradability than that of the linear PLLA. 展开更多
关键词 melt synthesis poly(lactic acid) epoxy compound chain extender
下载PDF
Edaravone-loaded poly(amino acid) nanogel inhibits ferroptosis for neuroprotection in cerebral ischemia injury
14
作者 Yunhan Zhang Zhulin Zou +5 位作者 Shuang Liu Fangfang Chen Minglu Li Haoyang Zou Haiyan Liu Jianxun Ding 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2024年第2期89-101,共13页
Neurological injury caused by ischemic stroke is a major cause of permanent disability and death. The currently available neuroprotective drugs fail to achieve desired therapeutic efficacy mainly due to short circulat... Neurological injury caused by ischemic stroke is a major cause of permanent disability and death. The currently available neuroprotective drugs fail to achieve desired therapeutic efficacy mainly due to short circulation half-life and poor blood−brain barrier (BBB) permeability. For that, an edaravone-loaded pH/glutathione (pH/GSH) dual-responsive poly(amino acid) nanogel (NG/EDA) was developed to improve the neuroprotection of EDA. The nanogel was triggered by acidic and EDA-induced high-level GSH microenvironments, which enabled the selective and sustained release of EDA at the site of ischemic injury. NG/EDA exhibited a uniform sub-spherical morphology with a mean hydrodynamic diameter of 112.3 ± 8.2 nm. NG/EDA efficiently accumulated at the cerebral ischemic injury site of permanent middle cerebral artery occlusion (pMCAO) mice, showing an efficient BBB crossing feature. Notably, NG/EDA with 50 µM EDA significantly increased neuron survival (29.3%) following oxygen and glucose deprivation by inhibiting ferroptosis. In addition, administering NG/EDA for 7 d significantly reduced infarct volume to 22.2% ± 7.2% and decreased neurobehavioral scores from 9.0 ± 0.6 to 2.0 ± 0.8. Such a pH/GSH dual-responsive nanoplatform might provide a unique and promising modality for neuroprotection in ischemic stroke and other central nervous system diseases. 展开更多
关键词 poly(amino acid)nanogel Controlled drug delivery Inhibition of ferroptosis NEUROPROTECTION Cerebral ischenia injury therapy
下载PDF
Synergism of Zinc Oxide/Organoclay-Loaded Poly(lactic acid) Hybrid Nanocomposite Plasticized by Triacetin for Sustainable Active Food Packaging
15
作者 Ponusa Songtipya Thummanoon Prodpran +1 位作者 Ladawan Songtipya Theerarat Sengsuk 《Journal of Renewable Materials》 EI CAS 2024年第5期951-967,共17页
The synergistic effect of organoclay(OC)and zinc oxide(ZnO)nanoparticles on the crucial properties of poly(lactic acid)(PLA)nanocompositefilms was systematically investigated herein.After their incorporation into PLA v... The synergistic effect of organoclay(OC)and zinc oxide(ZnO)nanoparticles on the crucial properties of poly(lactic acid)(PLA)nanocompositefilms was systematically investigated herein.After their incorporation into PLA via the solvent casting technique,the water vapor barrier property of the PLA/OC/ZnOfilm improved by a maximum of 86%compared to the neat PLAfilm without the deterioration of Young’s modulus or the tensile strength.Moreover,thefilm’s self-antibacterial activity against foodborne pathogens,including gram-negative(Escherichia coli,E.coli)and gram-positive(Staphylococcus aureus,S.aureus)bacteria,was enhanced by a max-imum of approximately 98–99%compared to the neat PLAfilm.Furthermore,SEM images revealed the homo-geneous dispersion of both nano-fillers in the PLA matrix.However,the thermal stability of thefilm decreased slightly after the addition of the OC and ZnO.Thefilm exhibited notable light barrier properties in the UV-Vis range.Moreover,the incorporation of a suitable biodegradable plasticizer significantly decreased the Tg and notably enhanced theflexibility of the nanocompositefilm by increasing the elongation at break approxi-mately 1.5-fold compared to that of the neat PLAfilm.This contributes to its feasibility as an active food packa-ging material. 展开更多
关键词 poly(lactic acid)nanocomposite ORGANOCLAY zinc oxide barrier property antibacterial activity active food packaging
下载PDF
Biomechanical features of Poly-D,L-lactic acid (PDLLA) rods through the degradation in vitro and in vivo 被引量:1
16
作者 赵良瑜 侯春林 +2 位作者 陈爱民 王以进 熊成东 《Journal of Medical Colleges of PLA(China)》 CAS 2006年第1期49-54,共6页
Objective:To observe the changing of biomechanical features during the degradation course of poly-D,L-lactic acid (PDLLA) rods in vivo and in vitro and to evaluate its value as an internal fixation material. Metho... Objective:To observe the changing of biomechanical features during the degradation course of poly-D,L-lactic acid (PDLLA) rods in vivo and in vitro and to evaluate its value as an internal fixation material. Methods :PDLLA rods were emerged into PBS simultaneous body fluid with constant temperature of 37℃ and the rods were embedded into muscle tissue of 20 rabbits for degradation in vitro and in vivo . The rods were taken out in 2, 4, 6, 8 and 12 weeks. Biomechanical features of bending, shearing and axial compression strength, rigidity and elastic modulus were observed during the degradation course. Statistical method was used to test the changes of biomechanical parameters. Results: (1)There was similar changes of bending, compressive, shearing strength and bending, compressive and shearing rigidity of the PDLLA rods between in vivo and in vitro. (2)Bending, compressive, shearing strength decreased 33%, 18 % and 43 % respectively within the first stage of the degradation, and after 6 weeks of degradation, they decreased slowly. (3)Elastic modulus, bending, compressive and shearing rigidity.decreased sharply during the 6 weeks of degradation, with a drop of 22%, 39% and 30% respectively, and after 8 weeks, they decreased slowly. Even after 12 weeks of degradation, the strength of the rods was still higher than that of sponge bone. Conclusion: During the degradation of the material, the strength and rigidity of PDLLA rods can meet the need of fracture fixation of cancellous bones. 展开更多
关键词 poly-D l-lactic acid absorbable internal fixation rod biomechanical features internal fixation animal test
下载PDF
Degradable properties of lam inated composite scaffolds of β-tricalcium phosphate/poly[L-lactic acid] 被引量:2
17
《Chinese Journal of Biomedical Engineering(English Edition)》 2001年第2期81-83,共3页
关键词 composite scaffolds of PLLA phosphate/poly[l-lactic acid Degradable properties of lam inated tricalcium
下载PDF
In vitro Degradation of Butanediamine-Grafted Poly(DL-Lactic acids)
18
作者 罗彦凤 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第3期426-430,共5页
The degradation of butanediamine-grafted poly(DL-lactic acid) polymers (BDPLAs) in vitro together with PDLLA and maleic anhydride-grafted poly(DL-lactic acid) polymers (MPLAs) was investigated by observation o... The degradation of butanediamine-grafted poly(DL-lactic acid) polymers (BDPLAs) in vitro together with PDLLA and maleic anhydride-grafted poly(DL-lactic acid) polymers (MPLAs) was investigated by observation of the changes of the pH value of incubation media, and weight loss ratio during degradation duration of 12 weeks. The results reveal that the acidity of PDLLA degradation products was weakened or neutralized by grafting butanediamine onto PDLLA. A uniform degradation of BDPLAs was observed in comparison with an acidity-induced auto-accelerating degradation featured by PDLLA and MPLAs. The biodegradation behaviors of BDPLAs can be adjusted by controlling the content of BDA. BDPLAs might be a new derivative of PDLLA-based biodegradable materials for medical applications without acidity-caused irritations and acidity-induced auto-accelerating degradation behavior as that of PDLLA. 展开更多
关键词 poly(Dl-lactic acid) maleic anhydride butanediamine in vitro biodegradation
下载PDF
Composite Biomaterials Based on Poly(L-Lactic Acid)and Functionalized Cellulose Nanocrystals
19
作者 Mariia Stepanova Ilia Averianov +6 位作者 Olga Solomakha Natalia Zabolotnykh Iosif Gofman Mikhail Serdobintsev Tatiana Vinogradova Viktor Korzhikov-Vlakh Evgenia Korzhikova-Vlakh 《Journal of Renewable Materials》 SCIE EI 2020年第4期383-395,共13页
The biocomposite films were prepared from poly(L-lactic acid)and cellulose nanocrystals.To improve interfacial compatibility of hydrophilic cellulose nanocrystals with hydrophobic matrix polymer as well as to provide ... The biocomposite films were prepared from poly(L-lactic acid)and cellulose nanocrystals.To improve interfacial compatibility of hydrophilic cellulose nanocrystals with hydrophobic matrix polymer as well as to provide the osteoconductive properties,cellulose was functionalized with poly(glutamic acid).The modified cellulose nanocrystals were better distributed and less aggregated within the matrix,which was testified by scanning electron,optical and polarized light microscopy.According to mechanical tests,composites filled with nanocrystals modified with PGlu demonstrated higher values of Young’s modulus,elongation at break and tensile strength.Incubation of composite materials in model buffer solutions for 30 weeks followed with staining of Ca^(2+)deposits with Alizarin Red S assay testified better mineralization of materials containing PGlu-modified cellulose nanocrystals as filler.As the result of in vivo experiment,the developed composite materials showed less level of inflammation in comparison with pure polymer matrix and composites filled with non-functionalized cellulose nanocrystals. 展开更多
关键词 BIOMATERIALS polymer composites biodegradable and biocompatible polymers poly(l-lactic acid) cellulose nanocrystals MODIFICATION
下载PDF
Preparation of Poly ( L-lactic acid ) / Vermiculites Composites by in situ Copolymerization of Lactic Acid and Hydroxylic Vermiculites
20
作者 徐红 刘欢 +2 位作者 马辉 钟毅 毛志平 《Journal of Donghua University(English Edition)》 EI CAS 2012年第4期326-330,共5页
L-lactic acid (L-LA) based copolymer/hydroxylation vermiculites composites (PLLA-co-bis A/HVMTs) were prepared by in situ reaction among L-LA, adipic acid, and hydroxylation lamellar vermiculites (HVMTs) using bisphen... L-lactic acid (L-LA) based copolymer/hydroxylation vermiculites composites (PLLA-co-bis A/HVMTs) were prepared by in situ reaction among L-LA, adipic acid, and hydroxylation lamellar vermiculites (HVMTs) using bisphenol-A epoxy resin as chain extending agent. HVMTs were obtained by sulfuric acid-leaching of lamellar vermiculites (VMTs). The effects of sulfuric acid leaching on the VMTs structure were characterized by X-ray diffraction (XRD), 29Si magic-angle spinning nuclear magnetic resonance(29Si NMR), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), and thermogravimetric analysis (TGA). FTIR, FE-SEM, and TGA were used to characterize the reaction activity of HVMTs. The results indicated that VMTs with increased hydroxyl groups had been successfully obtained and could react with -COOH of the reaction system. The amount of L-LA based copolymer grafted on the surface of HVMTs was more than 22%. The onset decomposition temperature of L-LA based copolymer grafted on the surface of HVMTs was 30℃ higher than that of free L-LA based copolymer. 展开更多
关键词 l-lactic acid(L-LA) based copolymer vermiculites in situ reaction COMPOSITES
下载PDF
上一页 1 2 228 下一页 到第
使用帮助 返回顶部