Poly(m-xylylene adipamide)/poly(ethylene terephthalate)(MXD6/PET) copolymers are synthesized by melt copolycondensation with 1–5 wt% low molecular weight PET oligomers into the MXD6 oligomers at 260 ℃.FR-IR an...Poly(m-xylylene adipamide)/poly(ethylene terephthalate)(MXD6/PET) copolymers are synthesized by melt copolycondensation with 1–5 wt% low molecular weight PET oligomers into the MXD6 oligomers at 260 ℃.FR-IR and1 H NMR analysis results indicate that the interchange reaction has occurred between MXD6 oligomers and PET oligomers. The thermal behavior of copolymers shows that the melting temperature of MXD6/PET copolymers decreases with the increasing of amount of PET oligomers, while the crystallization temperature accordingly increases. And the equilibrium temperature Tm0 is evaluated to be 251.8 ℃ for the copolymers with5 wt% PET oligomer adding, which is very close to that of neat MXD6. The tensile and impact strength of MXD6/PET copolymers are significantly improved than that of pure MXD6 by mechanical properties test, and the microfibril structure in the impact fracture sample's surface reveals the feature of ductile fracture.展开更多
The effects of three types of electrically-inert fillers, calcium carbonate (CaCO_3), talc and glass fiber (GF), on electrical resistivity, crystallization behavior and dynamic mechanical properties of poly(m-xyl...The effects of three types of electrically-inert fillers, calcium carbonate (CaCO_3), talc and glass fiber (GF), on electrical resistivity, crystallization behavior and dynamic mechanical properties of poly(m-xylene adipamide) (MXD6)/multiwalled carbon nanotube (MWCNT) composites are investigated. The electrical resistivity of MXD6/MWCNT composites is significantly reduced with the addition of inert fillers due to the volume-exclusion effect that leads to increased effective concentration of MWCNTs in MXD6 matrix and also due to improved MWCNT dispersion. The crystallization temperature of MXD6 increases with the addition of MWCNTs, indicating that MWCNTs can act as nucleating agent and induce crystallization of MXD6. The incorporation of inert fillers has no further effect on crystallization behavior of MXD6, but significantly improves the storage modulus of MXD6/MWCNT composite, demonstrating that CaCO_3, talc and GF filled MXD6/MWCNT composites are very promising materials with not only improved electrical property but also excellent mechanical properties.展开更多
文摘Poly(m-xylylene adipamide)/poly(ethylene terephthalate)(MXD6/PET) copolymers are synthesized by melt copolycondensation with 1–5 wt% low molecular weight PET oligomers into the MXD6 oligomers at 260 ℃.FR-IR and1 H NMR analysis results indicate that the interchange reaction has occurred between MXD6 oligomers and PET oligomers. The thermal behavior of copolymers shows that the melting temperature of MXD6/PET copolymers decreases with the increasing of amount of PET oligomers, while the crystallization temperature accordingly increases. And the equilibrium temperature Tm0 is evaluated to be 251.8 ℃ for the copolymers with5 wt% PET oligomer adding, which is very close to that of neat MXD6. The tensile and impact strength of MXD6/PET copolymers are significantly improved than that of pure MXD6 by mechanical properties test, and the microfibril structure in the impact fracture sample's surface reveals the feature of ductile fracture.
文摘The effects of three types of electrically-inert fillers, calcium carbonate (CaCO_3), talc and glass fiber (GF), on electrical resistivity, crystallization behavior and dynamic mechanical properties of poly(m-xylene adipamide) (MXD6)/multiwalled carbon nanotube (MWCNT) composites are investigated. The electrical resistivity of MXD6/MWCNT composites is significantly reduced with the addition of inert fillers due to the volume-exclusion effect that leads to increased effective concentration of MWCNTs in MXD6 matrix and also due to improved MWCNT dispersion. The crystallization temperature of MXD6 increases with the addition of MWCNTs, indicating that MWCNTs can act as nucleating agent and induce crystallization of MXD6. The incorporation of inert fillers has no further effect on crystallization behavior of MXD6, but significantly improves the storage modulus of MXD6/MWCNT composite, demonstrating that CaCO_3, talc and GF filled MXD6/MWCNT composites are very promising materials with not only improved electrical property but also excellent mechanical properties.