Silica gels with a high specific surface area and high adsorption activity ,which have high selectivity and high adsorption capacity for zirconium in acidic high level radioactive liquid waste (HLLW), have been prepar...Silica gels with a high specific surface area and high adsorption activity ,which have high selectivity and high adsorption capacity for zirconium in acidic high level radioactive liquid waste (HLLW), have been prepared from water-glass and hydrochloric acid through adding surfactants. The surfactant modifies the surface of the primary sol particles, thus suppresses the growth of the primary particle,but accelerates their agglomeration. The action of the surfactant is similar to that of the organic structure-directing agent and makes the sol cluster cross-linkage ring-like network in short order. The specific surface area of the silica gel is 998 m 2/g; the static adsorption capacity and the adsorption distribution coefficient for zirconium in HLLW are 32.6 mg/g and 56.1 mL/g, respectively.展开更多
A novel adsorbent (AMPS-silica) was synthesized by bounding AMPS (2-acrylamido-2-methylpropanesulfonic acid) onto silica surface, which functioned with γ-methacryloxypropyltrimethoxysilane reagent. The adsorbent ...A novel adsorbent (AMPS-silica) was synthesized by bounding AMPS (2-acrylamido-2-methylpropanesulfonic acid) onto silica surface, which functioned with γ-methacryloxypropyltrimethoxysilane reagent. The adsorbent was characterized by nitrogen adsorption/desorption measurement, thermogravimetric analysis (TGA) and potentiometric titration analysis. The TGA result indicated that the surface modification reactions introduced some organic functional groups onto the surface of silica. The surface area of AMPSsilica was 389.7 m2/g. The adsorbent was examined for copper ion removal in series of batch adsorption experiments. Results showed that the adsorption of Cu2+ onto AMPS-silica was pH dependent, and the adsorption capacity increased with increasing pH from 2 to 6. The adsorption kinetics showed that Cu^2+ adsorption was fast and the data fitted well with a pseudo secondorder kinetic model. The adsorption of Cu^2+ onto AMPS-silica obeyed both Freundlich and Langmuir isotherms, with r^2 = 0.993 and r^2 = 0.984, respectively. The maximum Cu^2+ adsorption capacity was 19.9 mg/g. The involved mechanism might be the adsorption through metal binding with organic functional groups such as carboxyl, amino and sulfonic groups. Cu^2+ loaded on AMPS-silica could be desorbed in HNO3 solution, and the adsorption properties remain stable after three adsorption-desorption cycles.展开更多
The adsorption of Pb(II)on silica gel synthesized from chemical glass bottle waste has been studied.The effect of independent variables(adsorbent dose,initial concentration of Pb(II),contact time,and pH)on the Pb(II)r...The adsorption of Pb(II)on silica gel synthesized from chemical glass bottle waste has been studied.The effect of independent variables(adsorbent dose,initial concentration of Pb(II),contact time,and pH)on the Pb(II)removal from water was evaluated and optimized using the Response Surface Methodology(RSM).Under optimized conditions(adsorbent dose:20 mg;contact time:30 min;initial Pb(II)concentration:120 mg.L^(−1);and pH:8),the removal of Pb(II)was 99.77%.The adsorption equilibrium data obtained from the batch experiment were investigated using different isotherm models.The Langmuir isotherm model fits the experimental data.This shows that the surface of the silica gel synthesized from chemical bottles waste was covered by a Pb(II)monolayer.XRF analysis showed that the synthesized silica gel had a SiO_(2) content of 75.63%.Amorphous silica was observed from XRD analysis.SEM-EDX characterization showed that Pb was adsorbed on the silica gel surface.SEM analysis showed that silica gel has irregular particles with a surface area of 297.08 m2.g^(−1) with a pore radius of 15.74 nm calculated from BET analysis.展开更多
The effect of drying techniques on the microstructure,morphology and pore structure of porous silica gels was studied in the paper.The gels were prepared by using sol-gel process and different drying routes:freeze-dry...The effect of drying techniques on the microstructure,morphology and pore structure of porous silica gels was studied in the paper.The gels were prepared by using sol-gel process and different drying routes:freeze-drying (FD),low pressure drying (LPD),high temperature drying (HTD) and chemical modification & ambient drying (CMD) techniques.Observation under pore distribution and structural properties showed that CMD technique leads to homogenous mesoporous silica material with specific surface area of 745 m2/g,and the average pore size around 20 nm,while LPD and HTD result in loosely packed particles with non-isotropic aggregation pattern.The specific surface areas of LPD and HTD samples are 419 and 513 m2/g respectively,and the pore size distribution of the samples are observed distributing widely in range of 10-100 nm.Freeze drying method is a new but prospective way to prepare mesoporous silica.The specific area of FD sample is around 500 m2/g.By the comparison for the properties of the gels,this paper wants to induce a further interest in finding a proper method to synthesize the porous silica gels for low price use.展开更多
Biogas can be used as an alternative energy source for producing heat and electricity;however, volatile methylsiloxanes(VOSiC) present in biogas can severely damage heat exchangers, turbines and gas engines. Consequen...Biogas can be used as an alternative energy source for producing heat and electricity;however, volatile methylsiloxanes(VOSiC) present in biogas can severely damage heat exchangers, turbines and gas engines. Consequently, e cient removal of VOSiC from biogas that is used as a biofuel is required. In this work, acetylated silica gel(Ac@SG) was synthesized,via treatment of microporous silica gel(SG) with acetic anhydride as an adsorbent, for removal of VOSiC from biogas,and characterized with XRD, SEM–EDS, N2-BET and FT-IR. This Ac@SG adsorbent exhibited a meso-/microporous structure and hydrophobic surface, indicating it was a more e cient adsorbent for removing hexamethyldisiloxane(L2) and octamethylcyclotetrasiloxane(D4) from biogas samples than conventional SG. It was found that the adsorption capacities of Ac@SG reached 304 mg L2/g for hexamethyldisiloxane and 916 mg D4/g for octamethylcyclotetrasiloxane at lower temperatures in the experimental range, and water had no significant e ect on its absorption e ciency. The used Ac@SG could be easily regenerated by heating it at 110 °C, and the adsorption capacity of recycled Ac@SG for hexamethyldisiloxane and octamethylcyclotetrasiloxane was kept constant in four recycle adsorption experiments.展开更多
This work presents a contribution to the study of the process of cold production by adsorption from solar energy. In this paper, we discuss a comparative study of the operation of a solar adsorption refrigerator using...This work presents a contribution to the study of the process of cold production by adsorption from solar energy. In this paper, we discuss a comparative study of the operation of a solar adsorption refrigerator using the silica gel-water couple and the zeolite-water couple through dynamic modeling and simulation. The mathematical model representing the evolution of heat and mass transfer at each component of the adsorption solar refrigerator has been developed. It appears from this study that the evolution of the temperature of the two adsorbents (zeolite and silica gel) is quasi-similar throughout the operating cycle. However, the maximum mass of water vapor adsorbed by the silicagel (0.24 kg/kg) is higher than that adsorbed by the zeolite (0.201 kg/kg). In the same way, the mass of water vapor cycled, obtained with the silicagel-water couple which is 0.14 kg/kg, is higher than that obtained with the zeolite-water couple which is 0.081 kg/kg. Therefore, the amount of cold produced 9.178 MJ and the solar coefficient of performance 0.378 obtained with the solar refrigerator using the silica gel-water couple, are better.展开更多
In this paper,a novel mesoporous silica gel evenly doped by Prussian blue nanoparticles(PBMSG) was successfully synthesized by using N,N-dimethylamide as template with a large Barrett-Emmett-Teller(BET) surface area o...In this paper,a novel mesoporous silica gel evenly doped by Prussian blue nanoparticles(PBMSG) was successfully synthesized by using N,N-dimethylamide as template with a large Barrett-Emmett-Teller(BET) surface area of 505 m^(2)/g and an average pore size of 2.9 nm.The static adsorption experiments showed that the equilibration time of PBMSG for Cs^(+) was about 30 min.The adsorption isotherm of PBMSG for Cs^(+) accorded with Langmuir model and the theoretical maximum adsorption capacity was80.0± 2.9 mg/g.When the initial concentration of Cs^(+) was 1.00 mg/L,the adsorption partition coefficient Kd could reach 3.5 × 10^4 mL/g After adsorption,Cs+ could be eluted by dilute hydrochloric acid(pH2) with an efficiency of 89.8%,while no K^(+),Fe^(3+),Fe^(2+) was eluted.PBMSG exhibited good selectivity toward Cs^(+) and Rb^(+).In the presence of high concentration of K^(+),the selective adsorption of PBMSG could change the mass ratio of K^(+),Rb^(+) and Cs^(+) from 96.63:0.83:1.00-1.12:0.73:1.00.The separation of Cs^(+) and Rb^(+) from K^(+) with similar concentration(100 mg/g) was realized by column experiment.This indicated that PBMSG was suitable for rapid recovery of low concentration of rubidium and cesium from complex matrixes,such as wastewater and salt lake brine,etc.展开更多
The adsorption isotherms of cetyltrimethylammonium ion (CTA^+) together with that of the Br^- counterion on silica gel, and the effects of pH and added salts(NaF, NaCl and NaBr)have been systematically determined at 2...The adsorption isotherms of cetyltrimethylammonium ion (CTA^+) together with that of the Br^- counterion on silica gel, and the effects of pH and added salts(NaF, NaCl and NaBr)have been systematically determined at 25℃. Electrophoretic mobilities of the silica gel particles have also been measured in the same conditions. The adsorption isotherm of CTA^+ consists of four regions. Region I, at low concentrations of surfactant, the adsorption results primarily from electrostatic force between CTA^+ and the negatively charged silica surface. Region II (first plateau), at medium concentrations, the adsorption is due to both the electrostatic force and the specific attraction (vdW forces) between CTA^+ and the surface. Region III, characterized by an abrupt increase in the slope of the isotherm when the concentration reaches a particular point known as hemimicelle concentration (HMC). The abrupt increase in the adsorption is due to the hydrophobic interaction between hydrocarbon chains. Region IV(second plateau), at or above CMC, the limiting adsorption is reached as the micelle is not adsorbed, Based on this model. the experimental results can be explained reasonably. The results show that the HMC is about half of the CMC. According to the assumption that, each adsorbed CTA^+ ion in the first plateau is an active center for surface aggregation, the average aggregation number of hemimicelle have been calculated.展开更多
The adsorption isotherms of phenylalanine from aqueous solution on active carbon and silica gel at varying pH,and the influence of inorganic salt upon the ad rption have been studied (at 25℃).The adsorption amount of...The adsorption isotherms of phenylalanine from aqueous solution on active carbon and silica gel at varying pH,and the influence of inorganic salt upon the ad rption have been studied (at 25℃).The adsorption amount of phcnylalanine on the silica gel is very low due to the strong ad- sorption of water by silica gel.The results on the active carbon show:(1)The adsorption is found to be pH-dependent,within pH 4.1—5.1 it increases with pH,within pH 5.1—11.8 it decreases with pH,at pH 5.1 the adsorption reaches its maximum;(2)The phenylalanine is adsorbed mainly in the form of zwitterion;(3)A certain amount of cations and anions of phenylalanine are also adsorbed with van der Waals interaction;(4)After adding NaCl,the adsorption of phenylalanine increases markedly.展开更多
Ecological adsorption technology is becoming a focus of attention by industry due to the utilization of low grade thermal energy sources for cooling production. It can be a promising part of sustainable development co...Ecological adsorption technology is becoming a focus of attention by industry due to the utilization of low grade thermal energy sources for cooling production. It can be a promising part of sustainable development concept of the global economy. Therefore, research aiming at improving their performance i.e. Coefficient of Performance(COP) by optimizing the construction of sorption beds with a built in heat exchanger system is crucial. The heat transfer characteristics between the bed of porous media(sorbent) and surface of the heat exchanger system determine the heating power of an adsorption chiller. The HP increase can be obtained by heat transfer intensification due to the increase in the thermal conductivity of the sorbent layer in the vicinity of the heat exchanger's surface. The novel modification of the sorbent layer structure is proposed in the paper in order to improve the heat transfer processes in the heat exchanger boundary layer. The analysis of desorption process conditions in the parametric model of a coated and fixed adsorption bed design is presented in the paper. The computational fluid dynamics(CFD) with conjugate heat transfer analysis is used to determine the crucial input parameters(temperature distribution in the sorbent bed) for further analytical calculations. The commercial code Ansys Fluent was used to perform numerical simulations. The developed computational model consisted of three subdomains representing heating water, heat exchanger material(copper) and sorbent(silica gel). The comparison of a novel coated design and a conventional fixed bed is discussed in the paper. The numerical analysis is based on experimental thermal conductivity measurements of the sorbent layer in different configurations, which were performed using Laser Flash Method.展开更多
This research focuses on the effective removal of methylene blue dye using silica gel synthesized from chemical glass bottle waste as an environmentally friendly and cost-effective adsorbent.The adsorption process was...This research focuses on the effective removal of methylene blue dye using silica gel synthesized from chemical glass bottle waste as an environmentally friendly and cost-effective adsorbent.The adsorption process was optimized using Box-Behnken Design(BBD)and Response Surface Methodology(RSM)to investigate the influence of pH(6;8 and 10),contact time(15;30 and 45 min),adsorbent mass(30;50 and 70 mg),and initial concentration(20;50 and 80 mg/L)of the adsorbate on the adsorption efficiency.The BBD was conducted using Google Colaboratory software,which encompassed 27 experiments with randomly assigned combinations.The silica gel synthesized from chemical glass bottle was characterized by XRD,FTIR,SEM-EDX and TEM.The adsorption result was measured by spectrophotometer UV-Vis.The optimized conditions resulted in a remarkable methylene blue removal efficiency of 99.41%.Characterization of the silica gel demonstrated amorphous morphology and prominent absorption bands characteristic of silica.The Langmuir isotherm model best described the adsorption behavior,revealing chemisorption with a monolayer coverage of methylene blue on the adsorbent surface,and a maximum adsorption capacity of 82.02 mg/g.Additionally,the pseudo-second-order kinetics model indicated a chemisorption mechanism during the adsorption process.The findings highlight the potential of silica gel from chemical glass bottle waste as a promising adsorbent for wastewater treatment,offering economic and environmental benefits.Further investigations can explore its scalability,regenerability,and reusability for industrial-scale applications.展开更多
文摘Silica gels with a high specific surface area and high adsorption activity ,which have high selectivity and high adsorption capacity for zirconium in acidic high level radioactive liquid waste (HLLW), have been prepared from water-glass and hydrochloric acid through adding surfactants. The surfactant modifies the surface of the primary sol particles, thus suppresses the growth of the primary particle,but accelerates their agglomeration. The action of the surfactant is similar to that of the organic structure-directing agent and makes the sol cluster cross-linkage ring-like network in short order. The specific surface area of the silica gel is 998 m 2/g; the static adsorption capacity and the adsorption distribution coefficient for zirconium in HLLW are 32.6 mg/g and 56.1 mL/g, respectively.
基金supported by the Fundation for Creative Research Groups of China (No. 50621804)
文摘A novel adsorbent (AMPS-silica) was synthesized by bounding AMPS (2-acrylamido-2-methylpropanesulfonic acid) onto silica surface, which functioned with γ-methacryloxypropyltrimethoxysilane reagent. The adsorbent was characterized by nitrogen adsorption/desorption measurement, thermogravimetric analysis (TGA) and potentiometric titration analysis. The TGA result indicated that the surface modification reactions introduced some organic functional groups onto the surface of silica. The surface area of AMPSsilica was 389.7 m2/g. The adsorbent was examined for copper ion removal in series of batch adsorption experiments. Results showed that the adsorption of Cu2+ onto AMPS-silica was pH dependent, and the adsorption capacity increased with increasing pH from 2 to 6. The adsorption kinetics showed that Cu^2+ adsorption was fast and the data fitted well with a pseudo secondorder kinetic model. The adsorption of Cu^2+ onto AMPS-silica obeyed both Freundlich and Langmuir isotherms, with r^2 = 0.993 and r^2 = 0.984, respectively. The maximum Cu^2+ adsorption capacity was 19.9 mg/g. The involved mechanism might be the adsorption through metal binding with organic functional groups such as carboxyl, amino and sulfonic groups. Cu^2+ loaded on AMPS-silica could be desorbed in HNO3 solution, and the adsorption properties remain stable after three adsorption-desorption cycles.
文摘The adsorption of Pb(II)on silica gel synthesized from chemical glass bottle waste has been studied.The effect of independent variables(adsorbent dose,initial concentration of Pb(II),contact time,and pH)on the Pb(II)removal from water was evaluated and optimized using the Response Surface Methodology(RSM).Under optimized conditions(adsorbent dose:20 mg;contact time:30 min;initial Pb(II)concentration:120 mg.L^(−1);and pH:8),the removal of Pb(II)was 99.77%.The adsorption equilibrium data obtained from the batch experiment were investigated using different isotherm models.The Langmuir isotherm model fits the experimental data.This shows that the surface of the silica gel synthesized from chemical bottles waste was covered by a Pb(II)monolayer.XRF analysis showed that the synthesized silica gel had a SiO_(2) content of 75.63%.Amorphous silica was observed from XRD analysis.SEM-EDX characterization showed that Pb was adsorbed on the silica gel surface.SEM analysis showed that silica gel has irregular particles with a surface area of 297.08 m2.g^(−1) with a pore radius of 15.74 nm calculated from BET analysis.
基金Sponsored by the National Mega-Project of Scientific & Technical Supporting Programs,Ministry of Science &Technology of China (Grant No.2006BAJ04A04)the Science Foundation of Liaoning Province,China (Grant No. 2008S190)
文摘The effect of drying techniques on the microstructure,morphology and pore structure of porous silica gels was studied in the paper.The gels were prepared by using sol-gel process and different drying routes:freeze-drying (FD),low pressure drying (LPD),high temperature drying (HTD) and chemical modification & ambient drying (CMD) techniques.Observation under pore distribution and structural properties showed that CMD technique leads to homogenous mesoporous silica material with specific surface area of 745 m2/g,and the average pore size around 20 nm,while LPD and HTD result in loosely packed particles with non-isotropic aggregation pattern.The specific surface areas of LPD and HTD samples are 419 and 513 m2/g respectively,and the pore size distribution of the samples are observed distributing widely in range of 10-100 nm.Freeze drying method is a new but prospective way to prepare mesoporous silica.The specific area of FD sample is around 500 m2/g.By the comparison for the properties of the gels,this paper wants to induce a further interest in finding a proper method to synthesize the porous silica gels for low price use.
基金financial support from the National Natural Science Foundation of China (21677046)the Natural Science Foundation of Hebei Province (B2017205146)
文摘Biogas can be used as an alternative energy source for producing heat and electricity;however, volatile methylsiloxanes(VOSiC) present in biogas can severely damage heat exchangers, turbines and gas engines. Consequently, e cient removal of VOSiC from biogas that is used as a biofuel is required. In this work, acetylated silica gel(Ac@SG) was synthesized,via treatment of microporous silica gel(SG) with acetic anhydride as an adsorbent, for removal of VOSiC from biogas,and characterized with XRD, SEM–EDS, N2-BET and FT-IR. This Ac@SG adsorbent exhibited a meso-/microporous structure and hydrophobic surface, indicating it was a more e cient adsorbent for removing hexamethyldisiloxane(L2) and octamethylcyclotetrasiloxane(D4) from biogas samples than conventional SG. It was found that the adsorption capacities of Ac@SG reached 304 mg L2/g for hexamethyldisiloxane and 916 mg D4/g for octamethylcyclotetrasiloxane at lower temperatures in the experimental range, and water had no significant e ect on its absorption e ciency. The used Ac@SG could be easily regenerated by heating it at 110 °C, and the adsorption capacity of recycled Ac@SG for hexamethyldisiloxane and octamethylcyclotetrasiloxane was kept constant in four recycle adsorption experiments.
文摘This work presents a contribution to the study of the process of cold production by adsorption from solar energy. In this paper, we discuss a comparative study of the operation of a solar adsorption refrigerator using the silica gel-water couple and the zeolite-water couple through dynamic modeling and simulation. The mathematical model representing the evolution of heat and mass transfer at each component of the adsorption solar refrigerator has been developed. It appears from this study that the evolution of the temperature of the two adsorbents (zeolite and silica gel) is quasi-similar throughout the operating cycle. However, the maximum mass of water vapor adsorbed by the silicagel (0.24 kg/kg) is higher than that adsorbed by the zeolite (0.201 kg/kg). In the same way, the mass of water vapor cycled, obtained with the silicagel-water couple which is 0.14 kg/kg, is higher than that obtained with the zeolite-water couple which is 0.081 kg/kg. Therefore, the amount of cold produced 9.178 MJ and the solar coefficient of performance 0.378 obtained with the solar refrigerator using the silica gel-water couple, are better.
基金National NaturalScience Foundation of China (No.U1507203)Science Challenge Project (No.TZ2016004)。
文摘In this paper,a novel mesoporous silica gel evenly doped by Prussian blue nanoparticles(PBMSG) was successfully synthesized by using N,N-dimethylamide as template with a large Barrett-Emmett-Teller(BET) surface area of 505 m^(2)/g and an average pore size of 2.9 nm.The static adsorption experiments showed that the equilibration time of PBMSG for Cs^(+) was about 30 min.The adsorption isotherm of PBMSG for Cs^(+) accorded with Langmuir model and the theoretical maximum adsorption capacity was80.0± 2.9 mg/g.When the initial concentration of Cs^(+) was 1.00 mg/L,the adsorption partition coefficient Kd could reach 3.5 × 10^4 mL/g After adsorption,Cs+ could be eluted by dilute hydrochloric acid(pH2) with an efficiency of 89.8%,while no K^(+),Fe^(3+),Fe^(2+) was eluted.PBMSG exhibited good selectivity toward Cs^(+) and Rb^(+).In the presence of high concentration of K^(+),the selective adsorption of PBMSG could change the mass ratio of K^(+),Rb^(+) and Cs^(+) from 96.63:0.83:1.00-1.12:0.73:1.00.The separation of Cs^(+) and Rb^(+) from K^(+) with similar concentration(100 mg/g) was realized by column experiment.This indicated that PBMSG was suitable for rapid recovery of low concentration of rubidium and cesium from complex matrixes,such as wastewater and salt lake brine,etc.
文摘The adsorption isotherms of cetyltrimethylammonium ion (CTA^+) together with that of the Br^- counterion on silica gel, and the effects of pH and added salts(NaF, NaCl and NaBr)have been systematically determined at 25℃. Electrophoretic mobilities of the silica gel particles have also been measured in the same conditions. The adsorption isotherm of CTA^+ consists of four regions. Region I, at low concentrations of surfactant, the adsorption results primarily from electrostatic force between CTA^+ and the negatively charged silica surface. Region II (first plateau), at medium concentrations, the adsorption is due to both the electrostatic force and the specific attraction (vdW forces) between CTA^+ and the surface. Region III, characterized by an abrupt increase in the slope of the isotherm when the concentration reaches a particular point known as hemimicelle concentration (HMC). The abrupt increase in the adsorption is due to the hydrophobic interaction between hydrocarbon chains. Region IV(second plateau), at or above CMC, the limiting adsorption is reached as the micelle is not adsorbed, Based on this model. the experimental results can be explained reasonably. The results show that the HMC is about half of the CMC. According to the assumption that, each adsorbed CTA^+ ion in the first plateau is an active center for surface aggregation, the average aggregation number of hemimicelle have been calculated.
文摘The adsorption isotherms of phenylalanine from aqueous solution on active carbon and silica gel at varying pH,and the influence of inorganic salt upon the ad rption have been studied (at 25℃).The adsorption amount of phcnylalanine on the silica gel is very low due to the strong ad- sorption of water by silica gel.The results on the active carbon show:(1)The adsorption is found to be pH-dependent,within pH 4.1—5.1 it increases with pH,within pH 5.1—11.8 it decreases with pH,at pH 5.1 the adsorption reaches its maximum;(2)The phenylalanine is adsorbed mainly in the form of zwitterion;(3)A certain amount of cations and anions of phenylalanine are also adsorbed with van der Waals interaction;(4)After adding NaCl,the adsorption of phenylalanine increases markedly.
基金the project:"The development of innovative technology of adsorption chiller NETI?,using special,glued construction of the adsorption beds"(number:POIR.01.01.01-00-1659/15)partially supported by National Science Centre of Poland (Narodowe Centrum Nauki) grant number 2017/01/X/ST8/00019granted by the Faculty of Mathematics and Natural Sciences of Jan Dlugosz University in Czestochowa.
文摘Ecological adsorption technology is becoming a focus of attention by industry due to the utilization of low grade thermal energy sources for cooling production. It can be a promising part of sustainable development concept of the global economy. Therefore, research aiming at improving their performance i.e. Coefficient of Performance(COP) by optimizing the construction of sorption beds with a built in heat exchanger system is crucial. The heat transfer characteristics between the bed of porous media(sorbent) and surface of the heat exchanger system determine the heating power of an adsorption chiller. The HP increase can be obtained by heat transfer intensification due to the increase in the thermal conductivity of the sorbent layer in the vicinity of the heat exchanger's surface. The novel modification of the sorbent layer structure is proposed in the paper in order to improve the heat transfer processes in the heat exchanger boundary layer. The analysis of desorption process conditions in the parametric model of a coated and fixed adsorption bed design is presented in the paper. The computational fluid dynamics(CFD) with conjugate heat transfer analysis is used to determine the crucial input parameters(temperature distribution in the sorbent bed) for further analytical calculations. The commercial code Ansys Fluent was used to perform numerical simulations. The developed computational model consisted of three subdomains representing heating water, heat exchanger material(copper) and sorbent(silica gel). The comparison of a novel coated design and a conventional fixed bed is discussed in the paper. The numerical analysis is based on experimental thermal conductivity measurements of the sorbent layer in different configurations, which were performed using Laser Flash Method.
基金funded by Directorate of Research and Community Service(DRPM,Direktorat Riset dan Pengabdian Kepada Masyarakat)ITS through the ITS Research Local Grant(No.1727/PKS/ITS/2023).
文摘This research focuses on the effective removal of methylene blue dye using silica gel synthesized from chemical glass bottle waste as an environmentally friendly and cost-effective adsorbent.The adsorption process was optimized using Box-Behnken Design(BBD)and Response Surface Methodology(RSM)to investigate the influence of pH(6;8 and 10),contact time(15;30 and 45 min),adsorbent mass(30;50 and 70 mg),and initial concentration(20;50 and 80 mg/L)of the adsorbate on the adsorption efficiency.The BBD was conducted using Google Colaboratory software,which encompassed 27 experiments with randomly assigned combinations.The silica gel synthesized from chemical glass bottle was characterized by XRD,FTIR,SEM-EDX and TEM.The adsorption result was measured by spectrophotometer UV-Vis.The optimized conditions resulted in a remarkable methylene blue removal efficiency of 99.41%.Characterization of the silica gel demonstrated amorphous morphology and prominent absorption bands characteristic of silica.The Langmuir isotherm model best described the adsorption behavior,revealing chemisorption with a monolayer coverage of methylene blue on the adsorbent surface,and a maximum adsorption capacity of 82.02 mg/g.Additionally,the pseudo-second-order kinetics model indicated a chemisorption mechanism during the adsorption process.The findings highlight the potential of silica gel from chemical glass bottle waste as a promising adsorbent for wastewater treatment,offering economic and environmental benefits.Further investigations can explore its scalability,regenerability,and reusability for industrial-scale applications.