Different polyacrylonitrile (PAN) precursor fibers that displayed various thermal properties were studied by using differential scanning calorimetry (DSC). Results showed that some commercial PAN precursor fibers ...Different polyacrylonitrile (PAN) precursor fibers that displayed various thermal properties were studied by using differential scanning calorimetry (DSC). Results showed that some commercial PAN precursor fibers displayed double separated peaks and these fibers were of high quality because of their process stability during their conversion to carbon fibers of high performance. Some fabrication processes, such as spinning, drawing, could not apparently change the DSC features of a PAN precursor fiber. It was concluded that the thermal properties of a PAN precursor fiber was mainly determined from its comonomer content type and compositions.展开更多
Structural changes in carbon fibers at each stage of, especially, preoxidation process are well known to play a great role in achieving the ultimate product quality. Differential scanning calorimetry (DSC), scanning e...Structural changes in carbon fibers at each stage of, especially, preoxidation process are well known to play a great role in achieving the ultimate product quality. Differential scanning calorimetry (DSC), scanning electron microscope (SEM), density method and optical microscope were used to characterize the preoxidation extent. A conventional approach, e.g., density aim, to evaluate the extent of preoxidation is not very exact. A DSC curve of a PAN precursor only can provide general information, major in the temperature regime of preoxidation reaction. However, the evaluation of a preoxidation extent, especially from conventional preoxidation temperature with a great span regime of 200~400癈, is put forward in this paper, in which the evolution of core/shell morphological structure is a kind of straightforward evidence.展开更多
基金supported by the National Natural Science Foundation of China under grant No.59783002by the Natural Science Foundation of Henan under grant Nos.200510465008 and 0523021200.
文摘Different polyacrylonitrile (PAN) precursor fibers that displayed various thermal properties were studied by using differential scanning calorimetry (DSC). Results showed that some commercial PAN precursor fibers displayed double separated peaks and these fibers were of high quality because of their process stability during their conversion to carbon fibers of high performance. Some fabrication processes, such as spinning, drawing, could not apparently change the DSC features of a PAN precursor fiber. It was concluded that the thermal properties of a PAN precursor fiber was mainly determined from its comonomer content type and compositions.
基金the National Natural Science Foundatlon of China under grant No.50172004,50273002 ,50333070.
文摘Structural changes in carbon fibers at each stage of, especially, preoxidation process are well known to play a great role in achieving the ultimate product quality. Differential scanning calorimetry (DSC), scanning electron microscope (SEM), density method and optical microscope were used to characterize the preoxidation extent. A conventional approach, e.g., density aim, to evaluate the extent of preoxidation is not very exact. A DSC curve of a PAN precursor only can provide general information, major in the temperature regime of preoxidation reaction. However, the evaluation of a preoxidation extent, especially from conventional preoxidation temperature with a great span regime of 200~400癈, is put forward in this paper, in which the evolution of core/shell morphological structure is a kind of straightforward evidence.