期刊文献+
共找到1,027篇文章
< 1 2 52 >
每页显示 20 50 100
Simultaneously improving thermal conductivity,mechanical properties and metal fluidity through Cu alloying in Mg-Zn-based alloys
1
作者 Yuntao Zhang Wei Liu +3 位作者 Weipeng Chen Zhiqiang Li Hua Hou Yuhong Zhao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3823-3839,共17页
Mg-Zn-based alloys have been widely used in computer,communication,and consumer(3C)products due to excellent thermal conductivity.However,it is still a challenge to balance their mechanical performance and thermal con... Mg-Zn-based alloys have been widely used in computer,communication,and consumer(3C)products due to excellent thermal conductivity.However,it is still a challenge to balance their mechanical performance and thermal conductivity.Here,we investigate microstructure,mechanical performance,thermal conductivity and metal fluidity of Mg-5Zn(wt.%)alloy after Cu alloying by experimental and simulation methods.First,Mg-5Zn alloy consist ofα-Mg matrix and interdendritic MgZn phases.As the Cu content increases,however,MgZn phases disappear but intragranular Mg_(2)Cu and interdendritic MgZnCu phases appear in Mg-5Zn-Cu alloys.Besides,the grain size ofα-Mg phase is refined and the volume fraction of MgZnCu phase increases as the Cu content increases.Second,Cu addition is found to improve thermal conductivity of Mg-5Zn alloy remarkably.Especially,Mg-5Zn-4Cu alloy exhibits the best thermal conductivity of 124 W/(m·K),which is mainly due to the significant reduction in both solid solubility of Zn in theα-Mg matrix and lattice distortion ofα-Mg matrix.Moreover,a stable crystal structure of MgZnCu phase also contributes to an increased thermal conductivity based on first principles and molecular dynamics simulations.Third,Cu addition simultaneously enhances strength and ductility of Mg-5Zn alloy.Tensile yield strength and elongation of Mg-5Zn-6Cu alloy reach 117 MPa and 18.0%,respectively,which is a combined result of refinement,solution,second phase,and dislocation strengthening.Finally,combined with a phase field simulation,we found that Cu addition enhances metal fluidity of Mg-5Zn alloy.On the one hand,Cu alloying not only delays dendrite growth but also prolongs solidification time.On the other hand,MgZnCu phase stabilizes the dendrite growth of theα-Mg phases by reducing energy consumption during solidification of liquid metal.This work demonstrates that Cu alloying is an ideal strategy for synergistically improving the thermal conductivity,mechanical performance and metal fluidity of Mg-based alloys. 展开更多
关键词 Mg-Zn-Cu alloy Phase field Molecular dynamics Thermal conductivity Metal fluidity
下载PDF
Improvement of ionic conductivity of solid polymer electrolyte based on Cu-Al bimetallic metal-organic framework fabricated through molecular grafting
2
作者 Liu-bin SONG Tian-yuan LONG +5 位作者 Min-zhi XIAO Min LIU Ting-ting ZHAO Yin-jie KUANG Lin JIANG Zhong-liang XIAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2943-2958,共16页
A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of th... A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of the PEO-based electrolytes.Experimental and molecular dynamics simulation results indicated that the electrolyte with 10 wt.%CAB(PL-CAB-10%)exhibits high ionic conductivity(8.42×10~(-4)S/cm at 60℃),high Li+transference number(0.46),wide electrochemical window(4.91 V),good thermal stability,and outstanding mechanical properties.Furthermore,PL-CAB-10%exhibits excellent cycle stability in both Li-Li symmetric battery and Li/PL-CAB-10%/LiFePO4 asymmetric battery setups.These enhanced performances are primarily attributable to the introduction of the versatile CAB.The abundant metal sites in CAB can react with TFSI~-and PEO through Lewis acid-base interactions,promoting LiTFSI dissociation and improving ionic conductivity.Additionally,regular pores in CAB provide uniformly distributed sites for cation plating during cycling. 展开更多
关键词 polyethylene oxide Cu−Al bimetallic metal-organic framework solid lithium metal battery molecular grafting ionic conductivity
下载PDF
Anomalously High Conductivity of Deformed Metals at the Positive Temperatures
3
作者 Gennady A. Markov Vladimir N. Malyshev 《World Journal of Condensed Matter Physics》 2012年第2期85-90,共6页
The description of experimentally observed phenomenon of abnormally high electrical conductivity—'superconductivity' (SC) at the room and higher temperatures is represented. The effect was observed in metalli... The description of experimentally observed phenomenon of abnormally high electrical conductivity—'superconductivity' (SC) at the room and higher temperatures is represented. The effect was observed in metallic monospirals of small radius curvature with high density and regular distribution of dislocations. Transition into state of SC has been observed experimentally in the range from –50 up to 3000°C at the density of transmitting current up to 2·109 A/cm2. The experimental data confirming the watched phenomenon are represented. The explanations of this phenomenon are being proposed in the framework of the dislocation model. 展开更多
关键词 Metallic Monospirals DISLOCATION DENSITY The Anomalously High conductivity in Metals-Superconductivity Room and other POSITIVE TEMPERATURES The Velocity of Current DENSITY Growth
下载PDF
Predicted interfacial thermal conductance and thermal conductivity of diamond/Al composites with various interfacial coatings 被引量:9
4
作者 LIANG Xuebing JIA Chengchang +1 位作者 CHU Ke CHEN Hui 《Rare Metals》 SCIE EI CAS CSCD 2011年第5期544-549,共6页
The interfacial thermal conductance (ITC) and thermal conductivity (TC) of diamond/Al composites with various coatings were theoretically studied and discussed. A series of predictions and numerical analyses were ... The interfacial thermal conductance (ITC) and thermal conductivity (TC) of diamond/Al composites with various coatings were theoretically studied and discussed. A series of predictions and numerical analyses were performed to investigate the effect of thickness, sound velocity, and other parameters of coating layers on the ITC and TC. It is found that both the ITC and TC decline with increasing coating thickness, especially for the coatings with relatively low thermal conductivity. Nevertheless, if the coating thickness is close to zero, or quite a small value, the ITC and TC are mainly determined by the constants of the coating material. Under this condition, coatings such as Ni, TiC, Mo 2 C, SiC, and Si can significantly improve the ITC and TC of diamond/Al composites. By contrast, coatings like Ag will exert the negative effect. Taking the optimization of interfacial bonding into account, conductive carbides such as TiC or Mo 2 C with low thickness can be the most suitable coatings for diamond/Al composites. 展开更多
关键词 metallic matrix composites COATINGS diamonds thermal conductivity interfacial thermal conductance
下载PDF
Selective interfacial bonding and thermal conductivity of diamond/Cu-alloy composites prepared by HPHT technique 被引量:10
5
作者 Hui Chen Cheng-chang Jia +2 位作者 Shang-jie Li Xian Jia Xia Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第4期364-371,共8页
Cu-based and Cu-alloy-based diamond composites were made by high-pressure-high-temperature (HPHT) sintering with the aim of maximizing the thermal conductivity of the composites. Improvements in interfacial bonding ... Cu-based and Cu-alloy-based diamond composites were made by high-pressure-high-temperature (HPHT) sintering with the aim of maximizing the thermal conductivity of the composites. Improvements in interfacial bonding strength and thermo-physical properties of the composites were achieved using an atomized copper alloy with minor additions of Co, Cr, 13, and Ti. The thermal conductivity (TC) oh- mined exhibited as high as 688 W.m-1.K-1, but also as low as 325 W.m-1.K-l. A large variation in TC can be rationalized by the discrepancy of diamond-matrix interfacial bonding. It was found from fractography that preferential bonding between diamond and the Cu-alloy matrix occurred only on the diamond {100} faces. EDS analysis and Raman spectra suggested that selective interfacial bonding may be attributed to amorphous carbon increasing the wettability between diamond and the Cu-alloy matrix. Amorphous carbon was found to significantly affect the TC of the composite by interface modification. 展开更多
关键词 metallic matrix composites diamonds copper alloys interfacial bonding thermal conductivity
下载PDF
Effect of sintering parameters on the microstructure and thermal conductivity of diamond/Cu composites prepared by high pressure and high temperature infiltration 被引量:6
6
作者 Hui Chen Cheng-chang Jia Shang-jie Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第2期180-186,共7页
Pure Cu composites reinforced with diamond particles were fabricated by a high pressure and high temperature (HPHT) infiltration technique. Their microstructural evolution and thermal conductivity were presented as ... Pure Cu composites reinforced with diamond particles were fabricated by a high pressure and high temperature (HPHT) infiltration technique. Their microstructural evolution and thermal conductivity were presented as a function of sintering parameters (temperature, pressure, and time). The improvement in interfacial bonding strength and the maximum thermM conductivity of 750 W/(m.K) were achieved at the optimal sintering parameters of 1200℃, 6 GPa and 10 min. It is found that the thermal conductivity of the composites depends strongly on sintering pressure. When the sintering pressure is above 6 GPa, the diamond skeleton is detected, which greatly contributes to the excellent thermal conductivity. 展开更多
关键词 metallic matrix composites particle reinforced composites COPPER diamonds INFILTRATION microstructuralevolution thermal conductivity
下载PDF
Fabrication and thermal conductivity of copper matrix composites reinforced by tungsten-coated carbon nanotubes 被引量:6
7
作者 Jun-hui Nie Cheng-chang Jia +3 位作者 XianJia Yi Li Ya-feng Zhang Xue-bing Liang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第5期446-452,共7页
Carbon nanotubes (CNTs) were coated by tungsten using metal organic chemical vapor deposition. Magnetic stirring was employed to disperse the W-coated CNTs (W-CNTs) in a Cu matrix, and then, the mixed powders were... Carbon nanotubes (CNTs) were coated by tungsten using metal organic chemical vapor deposition. Magnetic stirring was employed to disperse the W-coated CNTs (W-CNTs) in a Cu matrix, and then, the mixed powders were consolidated by spark plasma sintering. The W-CNTs obtained a uniform dispersion within the Cu matrix when the W-CNT content was less than 5.0vo1%, but high content of W-CNTs (10vol%) resulted in the presence of clusters. The W-CNT/Cu composites containing low content of W-CNTs (〈5.0vol%) exhibited a higher thermal conductivity than the sintered pure Cu, while the CNT/Cu composites exhibited no increase in thermal conductivity after the incorporation of uncoated CNTs. The W-CNT content was found to play a crucial role in determining the thermal conductivity of the W-CNT/Cu composites. The thermal conductivity of the W-CNT/Cu composites increased first and then decreased with the W-CNT content increasing. When the W-CNT content was 2.5vo1%, the W-CNT/Cu composite obtained the maximum value of thermal conductivity. The thermal resistance of the (W-CNT)-Cu interface was predicted in terms of Maxwell-Gamett effective medium approximation, and its calculated value was about 3.0× 10-9 m2.K.W-l. 展开更多
关键词 metallic matrix composites (MMCs) carbon nanotubes TUNGSTEN copper spark plasma sintering thermal conductivity
下载PDF
Effect of processing parameters on the microstructure and thermal conductivity of diamond/Ag composites fabricated by spark plasma sintering 被引量:6
8
作者 GAO Wenjia,JIA Chengchang,JIA Xian,LIANG Xuebing,CHU Ke,ZHANG Luman,HUANG Hai,and LIU Meng School of Materials Science and Engineering,University of Science and Technology Beijing,Beijing 100083,China 《Rare Metals》 SCIE EI CAS CSCD 2010年第6期625-629,共5页
Diamond/metal composites with 50 vol.% diamond have been produced by spark plasma sintering(SPS) using pure Ag as a matrix and diamond particles as reinforcement.Three kinds of powder mixing processes were used to p... Diamond/metal composites with 50 vol.% diamond have been produced by spark plasma sintering(SPS) using pure Ag as a matrix and diamond particles as reinforcement.Three kinds of powder mixing processes were used to prepare the mixture of diamond/Ag powders:dry mixing without milling medium,wet mixing and magnetic blending.Subsequently,they were all consolidated by SPS at various processing parameters to produce bulk diamond/Ag composites.Then samples were heat treated in order to obtain a higher thermal conductivity.The effect of processing parameters on the morphologies of the mixed powders,the microstructure and the thermal conductivity of the composites were investigated by comparing the experimental data.It reveals that particles were easy to agglomerate and the distribution of mixed powders was inhomogeneous by dry mixing method,and wet mixing method is too complex.The most favorable mixing process is magnetic blending by which the powders can be homogenously mixed and the composites prepared by optimized SPS processing parameters can obtain the highest relative density and the best thermal conductivity among the composites prepared by different processes.The magnetic blending diamond/Ag composites even have a 23% increase in thermal conductivity compared with pure silver sintered by SPS. 展开更多
关键词 metal matrix composites powder mixing spark plasma sintering thermal conductivity
下载PDF
Thermal conductivity behavior of SPS consolidated AlN/Al composites for thermal management applications 被引量:5
9
作者 DUN Bo JIA Xian +1 位作者 JIA Chengchang CHU Ke 《Rare Metals》 SCIE EI CAS CSCD 2011年第2期189-194,共6页
A1N/A1 composites are a potentially new kind of thermal management material for electronic packaging and heat sink applications. The spark plasma sintering (SPS) technique was used for the first time to prepare the ... A1N/A1 composites are a potentially new kind of thermal management material for electronic packaging and heat sink applications. The spark plasma sintering (SPS) technique was used for the first time to prepare the A1N/A1 composites, and attention was focused on the effects of sintefing parameters on the relative density, microstructure and, in particular, thermal conductivity behavior of the composites. The results showed that the relative density and thermal conductivity of the composites increased with increasing sintering temperature and pressure. The composites sintered at 1550℃ for 5 min under 70 MPa showed the maximum relative density and thermal conductivity, corresponding to 99% and 97.5 W.m-1.K-1, respectively. However, the thermal conductivity of present A1N/A1 composites is still far below the theoretical value. Possible reasons for this deviation were discussed. 展开更多
关键词 metallic matrix composites aluminum nitride spark plasma sintering DENSITY thermal conductivity
下载PDF
Enhanced Thermal Conductivity and Bending Strength of Graphite Flakes/aluminum Composites Via Graphite Surface Modification 被引量:3
10
作者 蒋大鹏 ZHU Xiaomin YU Jiakang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第1期9-15,共7页
The effect of graphite surface modification on the thermal conductivity(TC) and bending strength of graphite flakes/Al composites(Gf/Al) prepared by gas pressure infiltration were investigated. Al3 Ni and Al4C3 phase ... The effect of graphite surface modification on the thermal conductivity(TC) and bending strength of graphite flakes/Al composites(Gf/Al) prepared by gas pressure infiltration were investigated. Al3 Ni and Al4C3 phase may form at the interface in Ni-coated Gf/Al and uncoated Gf/Al composites, respectively, while the Al-Cu compound cannot be observed in Cu-coated Gf/Al composites. The Cu and Ni coatings enhance TC and the bending strength of the composites in the meantime. TC of Cu-coated Gf/Al composites reach 515 Wm^-1·K^-1 with 75 vol% Gf, which are higher than that of Ni-coated Gf/Al. Meanwhile, due to Al3 Ni at the interface, the bending strength of Ni-coated Gf/Al composites are far more than those of the uncoated and Cu-coated Gf/Al with the same content of Gf. The results indicate that metal-coated Gf can effectively improve the interfacial bonding between Gf and Al. 展开更多
关键词 GRAPHITE flakes/Al composites metal COATING thermal conductivity BENDING strength
下载PDF
Thermal conductivity of diamond/copper composites with a bimodal distribution of diamond particle sizes prepared by pressure infiltration method 被引量:3
11
作者 CHEN Chao GUO Hong CHU Ke YIN Fazhang ZHANG Ximing HAN Yuanyuan FAN Yeming 《Rare Metals》 SCIE EI CAS CSCD 2011年第4期408-413,共6页
The thermal conductivity of diamond/copper composites with bimodal particle sizes was studied. The composites were prepared through pressure infiltration of liquid copper into diamond preforms with a mixture of 40 and... The thermal conductivity of diamond/copper composites with bimodal particle sizes was studied. The composites were prepared through pressure infiltration of liquid copper into diamond preforms with a mixture of 40 and 100 pm-size diamonds. The permeability of the preforms with different coarse-to-fine volume ratios of diamonds was investigated. The thermal conductivity of the diamond/copper composites with bimodal size distribution was compared to the theoretical value derived from an analytical model developed by Chu. It is predicted that the diamond/copper composites could reach a higher thermal conductivity and their surface roughness could be improved by applying bimodal diamond particle sizes. 展开更多
关键词 metallic matrix composites thermal conductivity diamonds copper size distribution pressure infiltration
下载PDF
Thermal conductivity of carbon nanotube-silver composite 被引量:8
12
作者 Hemant PAL Vimal SHARMA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期154-161,共8页
The molecular level mixing method was extended to fabricate carbon nanotube reinforced silver composite. The influence of type of carbon nanotubes(single/multiwall) reinforcement and their mode of functionalization... The molecular level mixing method was extended to fabricate carbon nanotube reinforced silver composite. The influence of type of carbon nanotubes(single/multiwall) reinforcement and their mode of functionalization(covalent/non-covalent) on thermal conductivity of silver composite was investigated. X-ray diffraction and electron diffraction spectroscopy(EDS) confirm the presence of silver and carbon in the composite powder. High resolution scanning electron microscopy and transmission electron microscopy ascertain embedded, anchored and homogeneously implanted carbon nanotubes in silver matrix. Effect of covalent functionalization on multiwall carbon nanotubes was monitored by Raman and Fourier transform infrared spectroscopy. These investigations confirm the addition of functional groups and structural integrity of carbon nanotubes even after covalent functionalization. Thermal conductivity of composites was measured by a laser flash technique and theoretically analyzed using an effective medium approach. The experimental results reveal that thermal conductivity decreases after incorporation of covalently functionalized multiwall nanotubes and single wall carbon nanotubes. However, non-covalently functionalized multiwall nanotube reinforcement leads to the increase in effective thermal conductivity of the composite and is in agreement with theoretical predictions derived from effective medium theory, in absence of interfacial thermal resistance. 展开更多
关键词 metal matrix composites carbon nanotubes thermal conductivity FUNCTIONALIZATION
下载PDF
Synthesis,Conductivity and Photosensitivity of 2-D Conjugated Polymers of Metal-porphyrazine with Sulfur Bridges 被引量:2
13
作者 Peng Zhenghe,\ Chen Xiaogui,\ Wang Zhengping,\ Wei Yihai,\ Qin Zibin College of Chemistry,Wuhan University, Wuhan 430072,China 《Wuhan University Journal of Natural Sciences》 CAS 1998年第3期94-98,共5页
The title polymers PMS 8Pz,M=Mn Ⅱ,Fe Ⅱ,Co Ⅱ,Ni Ⅱ,Cu Ⅱ,Zn Ⅱ,were synthesized by teaction of 2,3,5,6 tetracyano 1,4 dithiin with corresponding metal salts ,respectively.The styucture and properties of th... The title polymers PMS 8Pz,M=Mn Ⅱ,Fe Ⅱ,Co Ⅱ,Ni Ⅱ,Cu Ⅱ,Zn Ⅱ,were synthesized by teaction of 2,3,5,6 tetracyano 1,4 dithiin with corresponding metal salts ,respectively.The styucture and properties of these polyers were characterized by elemental analysis,transmission electron microscope,DTA,IR, UV Vis,fluorescence and EPR spectra. It has been found that these conjugated polymers have the property of intrinsic semiconductor. The conductivity σ 298K of these polymers is in the range of 10 -9  ̄10 -3 S · cm -1 under pressure 10.63 MPa and incremental in the metal orderMn < Co<Fe<Zn<Cu<Ni.\ The photosensitivity of the MS 8Pz to the CdS PVA films is incremental in the metal order Zn < Mn < Co < Fe < Cu < Ni. 展开更多
关键词 metal porphyrazine 2 D conjugated polymer SYNTHESIS conductivity PHOTOSENSITIVITY
下载PDF
Fabrication and Thermal Conductivity Improvement of Novel Composite Adsorbents adding with Nanoparticles 被引量:1
14
作者 WU Qibai YU Xiaofen +7 位作者 ZHANG Haiyan CHEN Yiming LIU Liying XIE Xialin TANG Ke LU Yiji WANG Yaodong ROSKILLY Anthony Paul 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第6期1114-1119,共6页
Thermal conductivity is one of key parameters of adsorbents, which will affect the overall system performance of adsorption chiller. To improve adsorbent's thermal conductivity is always one of research focuses in ch... Thermal conductivity is one of key parameters of adsorbents, which will affect the overall system performance of adsorption chiller. To improve adsorbent's thermal conductivity is always one of research focuses in chemisorption field. A new chemical composite adsorbent is fabricated by adding carbon coated metal(Aluminum and Nickel) nanoparticles with three different addition amounts into the mixture of chloride salts and natural expanded graphite aiming to improve the thermal conductivity. The preparation processes and its thermal conductivity of this novel composite adsorbent are reported and summarized. Experimental results indicate that the nanoparticles are homogenously dispersed in the composite adsorbent by applying the reported preparation processes. The thermal conductivity of the composite adsorbent can averagely enlarge by 20% when the weight ratio of the added nanoparticles is 10 wt%. Moreover, carbon coated aluminum nanoparticles exhibit more effective enlargement in thermal conductivity than nickel nanoparticles. As for the composite adsorbent of CaCl2-NEG, there is a big reinforcement from 30% to 50% for Al@C nanoparticles, however only 10% in maximum caused by Ni@C nanoparticles. The proposed research provides a methodology to design and prepare thermal conductive chemical composite adsorbent. 展开更多
关键词 thermal conductivity carbon coated metal nanoparticles chemical composite adsorbent
下载PDF
Thermal conductivity of soils with heavy metals concentration from the Niger Delta region of Nigeria 被引量:1
15
作者 AKINYEMI O.D OLOWOFELA J.A +1 位作者 AKINLADE O.O. AKANDE O.O. 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2006年第8期615-618,共4页
This paper presents the characteristic thermal and chemical properties of some surface soil samples from the oil-producing regions of Nigeria. A microprocessor-based thermal analyzer was used to determine the thermal ... This paper presents the characteristic thermal and chemical properties of some surface soil samples from the oil-producing regions of Nigeria. A microprocessor-based thermal analyzer was used to determine the thermal conductivity while spectrophotometric procedure was employed to conduct the heavy metal concentration analysis. Thermal conductivity values were compared with heavy metal concentrations in each soil sample. The values of lead and cadmium and their respective measured thermal conductivities were highly correlated, with their correlation coefficients both greater than 0.900, while other metals showed no correlation. 展开更多
关键词 SOIL Thermal conductivity Heavy metals NIGERIA
下载PDF
Analytical design of effective thermal conductivity for fluid-saturated prismatic cellular metal honeycombs 被引量:3
16
作者 Wenbin Wang Xiaohu Yang +3 位作者 Bin Han Qiancheng Zhang Xiangfei Wang Tianjian Lu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2016年第2期69-75,共7页
A comparative optimal design of fluid-saturated prismatic cellular metal honeycombs (PCMHs) having different cell shapes is presented for thermal management applications. Based on the periodic topology of each PCMH,... A comparative optimal design of fluid-saturated prismatic cellular metal honeycombs (PCMHs) having different cell shapes is presented for thermal management applications. Based on the periodic topology of each PCMH, a unit cell (UC) for thermal transport analysis was selected to calculate its effective thermal conductivity. Without introducing any empirical coefficient, we modified and extended the analytical model of parallel-series thermal-electric network to a wider porosity range (0.7 ~ 0.98) by considering the effects of two-dimensional local heat conduction in solid ligaments inside each UC. Good agreement was achieved between analytical predictions and numerical simulations based on the method of finite volume. The concept of ligament heat conduction efficiency (LTCE) was proposed to physically explain the mechanisms underlying the effects of ligament configuration on effective thermal conductivity (ETC). Based upon the proposed theory, a construct strategy was developed for designing the ETC by altering the equivalent interaction angle with the direction of heat flow: relatively small average interaction angle for thermal conduction and relatively large one for thermal insulation. 展开更多
关键词 Effective thermal conductivityPrismatic cellular metal honeycombLigament heat conduction efficiencyAnalytical designEquivalent interaction angle
下载PDF
Effects of Metal Absorber Thermal Conductivity on Clear Plastic Laser Transmission Welding 被引量:3
17
作者 Min-Qiu Liu De-Qin Ouyang +2 位作者 Chun-Bo Li Hui-Bin Sun Shuang-Chen Ruan 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第10期44-48,共5页
In our previous study, metals have been used as absorbers in the clear plastic laser transmission welding. The effects of metal thermal conductivity on the welding quality are investigated in the present work. Four me... In our previous study, metals have been used as absorbers in the clear plastic laser transmission welding. The effects of metal thermal conductivity on the welding quality are investigated in the present work. Four metals with distinctly different thermal conductivities, i.e., titanium, nickel, molybdenum, and copper, are selected as light absorbers. The lap welding is conducted with an 808 nm diode laser and simulation experiments are also conducted. Nickel electroplating test is carried out to minimize the side-effects from different light absorptivities of different metals. The results show that the welding with an absorber of higher thermal conductivity can accommodate higher laser input power before smoking, which produces a wider and stronger welding seam.The positive role of the higher thermal conductivity can be attributed to the fact that a desirable thermal field distribution for the molecular diffusion and entanglement is produced from the case with a high thermal conductivity. 展开更多
关键词 ab Effects of Metal Absorber Thermal conductivity on Clear Plastic Laser Transmission Welding
下载PDF
High-pressure investigations on the isostructural phase transition and metallization in realgar with diamond anvil cells 被引量:1
18
作者 Linfei Yang Lidong Dai +4 位作者 Heping Li Haiying Hu Meiling Hong Xinyu Zhang Pengfei Liu 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第2期1031-1037,共7页
The high-pressure structural,vibrational and electrical properties for realgar were investigated by in-situ Raman scattering and electrical conductivity experiments combined with first-principle calculations up to~30.... The high-pressure structural,vibrational and electrical properties for realgar were investigated by in-situ Raman scattering and electrical conductivity experiments combined with first-principle calculations up to~30.8 GPa.It was verified that realgar underwent an isostructural phase transition at~6.3 GPa and a metallization at a higher pressure of~23.5 GPa.The isostructural phase transition was well evidenced by the obvious variations of Raman peaks,electrical conductivity,crystal parameters and the As–S bond length.The phase transition of metallization was in closely associated with the closure of bandgap rather than caused by the structural phase transition.And furthermore,the metallic realgar exhibited a relatively low compressibility with the unit cell volume V_(0)=718.1.4Å^(3)and bulk modulus B_(0)=36.1 GPa. 展开更多
关键词 REALGAR Isostructural phase transition metallization Raman spectroscopy Electrical conductivity High pressure
下载PDF
Sensitive Determination of Metal Ions in Drinking Water by Capillary Electrophoresis Coupled with Contactless Conductivity Detection Using 18-Crown-6 Ether and Hexadecyltrimethylammonium Bromide as Complexing Reagents 被引量:1
19
作者 Wujuan Chen Fan Gao +5 位作者 Yi Zhang Yan Zhang Yi Li Yating Zhang Qingjiang Wang Pingang He 《American Journal of Analytical Chemistry》 2016年第11期737-747,共12页
A simple, economical, and sensitive capillary electrophoresis (CE) method integrated with capacitively coupled contactless conductivity detection was developed for the determination of metal ions such as K<sup>+... A simple, economical, and sensitive capillary electrophoresis (CE) method integrated with capacitively coupled contactless conductivity detection was developed for the determination of metal ions such as K<sup>+</sup>, Na<sup>+</sup>, Mg<sup>2+</sup>, Sr<sup>2+</sup>, Ca<sup>2+</sup> in drinking water. 18-Crown-6 ether and Hexadecyltrimethylammonium Bromide (CTAB) were employed as complexing reagents. The effects of electrolyte additives, citric acid buffer solution, and other separation conditions of CE were comprehensively investigated and carefully optimized. The best results were obtained in a running buffer solution composed of citric acid (12 mM), 18-crown-6 ether (0.2 mM), and CTAB (0.015 mM) at pH 3.5. Under these conditions, a complete separation of five metal ions was successfully achieved in less than 12 min. The limits of detection for the optimal procedure were determined to be in the range of 0.02 - 0.2 mg·L<sup>-1</sup>. The repeatability with respect to migration times and peak areas, expressed as relative standard deviations, was better than 2.3% and 5.1%, respectively. Evaluation of the efficiency of the methodology indicated that it was reliable for the determination of metal ions in six different brands of drinking water samples. 展开更多
关键词 Capillary Electrophoresis Contactless conductivity Detection Metal Ions FOOD Drinking Water
下载PDF
Study on Conductivity of Ceramics LaFe_(1 - x) Ni_xO_(3-δ)
20
作者 王成建 魏建华 +4 位作者 陈延学 刘德胜 陈大卫 赵焕绥 李翠萍 《Journal of Rare Earths》 SCIE EI CAS CSCD 1999年第3期200-202,共3页
The LaFe 1-x Ni x O 3-δ serial ceramics were prepared by standard solid phase reaction method. Two arm electric bridge principal and four electrode method were adopted to measure the resistivit... The LaFe 1-x Ni x O 3-δ serial ceramics were prepared by standard solid phase reaction method. Two arm electric bridge principal and four electrode method were adopted to measure the resistivity. The results indicate that LaFe 1-x Ni x O 3-δ ceramics are of metallic state conductivity when x varies from 0 6 to 0 8. There are oxygen vacancies and conductive electrons in the ceramics, which results in highly mixed conductivity of electrons and oxygen ions. The amount of oxygen vacancies depends on the sintering techniques, so the proper increase of sintering temperature can decrease the room temperature resistivity. A phase transition is found at around 120 K in the low temperature experiment. 展开更多
关键词 Rare earths Conductive ceramics Metallic state conductivity Oxygen vacancy Conductive electrons Oxygen ions
下载PDF
上一页 1 2 52 下一页 到第
使用帮助 返回顶部