ObjectivePolyamidoamine(PAMAM) dendrimers enhance the solubility of nicotinic acid. MethodsPAMAM dendrimers of generation 1 to 6 were prepared and the effect of pH and concentration of the dendrimers on the solubility...ObjectivePolyamidoamine(PAMAM) dendrimers enhance the solubility of nicotinic acid. MethodsPAMAM dendrimers of generation 1 to 6 were prepared and the effect of pH and concentration of the dendrimers on the solubility enhancement of nicotinic acid was investigated. ResultsThe pH and concentration of the dendrimers influence the solubility enhancement of nicotinic acid. Conclusions Electrostatic interaction between the carboxyl group of the nicotinic acid and the amine groups of the dendrimers is involved.展开更多
This paper described the first example of polyamidoamine dendrimers ester(PAMAM) used as a gel electrolyte with a short-chain polyethylene glycol (MPEG-400) as aplasticizer. The polymer films are solid and sticky. Bac...This paper described the first example of polyamidoamine dendrimers ester(PAMAM) used as a gel electrolyte with a short-chain polyethylene glycol (MPEG-400) as aplasticizer. The polymer films are solid and sticky. Background cyclic voltammetry (CV) shows apotential window between +0.7 and -0.7 V vs. Ag/AgCl. The voltammetry of ferrocene and7,7,8,8-tetracyanoquinodimethane (TCNQ) indicates that diffusion coefficients are in the range of10^(-8) -10^(-9) cm^2/s. Ionic conductivities are approximately 10^(-6) S/cm. Similar films usingdimethyl sulfoxide (DMSO) as a plasticizer instead of MPEG-400 have demonstrated ionicconductivities of 10^(-4) S/cm and reversible voltammetry. However, UV spectropho-tometry shows that70% of the DMSO is lost under vacuum, indicating the difficulty in quantifying the DMSO contentwhen exposed to vacuum.展开更多
The direct electron transfer of hemoglobin at the PAMAM-MWNTs-AuNPs composite film modified glassy carbon electrode was studied. In a phosphate buffer solution(PBS, pH=7.0), the formal potential(E^0) of Hb was -0....The direct electron transfer of hemoglobin at the PAMAM-MWNTs-AuNPs composite film modified glassy carbon electrode was studied. In a phosphate buffer solution(PBS, pH=7.0), the formal potential(E^0) of Hb was -0.105 V versus SCE, the electron transfer rate constant was 4.66 s-1. E^0' of Hb at the modified electrode was linearly varied in a pH range of 5.0-8.0 with a slope of-49.2 mV/pH. The Hb/PAMAM-MWNTs-AuNPs/GCE gave an excellent electrocatalytic response to the reduction of hydrogen peroxide. The catalytic current increased linearly with H2O2 concentration in a range of 1.0× 10^-6 to 2.2× 10^-3 mol/L. The detection limit was 2.0× 10^-7 mol/L at a signal to noise ratio of 3. The Michaelis-Menten constant(Km^app) was 2.95 mmol/L.展开更多
In this paper we report the peripheral functionalization of amine-terminated second generation poly(amidoamine) (PAMAM) with 9-anthracenecarboxalehyde and the preparation of dendrimer-encapsulated metal salts. The...In this paper we report the peripheral functionalization of amine-terminated second generation poly(amidoamine) (PAMAM) with 9-anthracenecarboxalehyde and the preparation of dendrimer-encapsulated metal salts. The interesting different behaviors of these hybrid materials were observed by fluorescence and UV-Vis spectra.展开更多
Background:Traditional Chinese medicine involves complex ingredients and mixtures of ingredients that often exhibit low bioavailability,and excipients are often lacking to increase the absorption-enhancing effects.Thi...Background:Traditional Chinese medicine involves complex ingredients and mixtures of ingredients that often exhibit low bioavailability,and excipients are often lacking to increase the absorption-enhancing effects.This study modified the generation 4 polyamidoamine dendrimer with polyethylene glycol of different molecular weights(5000,2000,1000)to form a series of polyamidoamine-co-polyethylene glycol(PAMAM-co-PEG)as a novel class of oral absorption enhancers.Evodiamine,the major alkaloid found in the traditional Chinese medicine Wu Zhu Yu(Fructus Evodiae),was used as a model drug to verify the absorption-enhancing effects and the safety of this alkaloid.Methods:This study utilized the solubility determination method documented in the Pharmacopoeia of the People’s Republic of China(2015 edition)and the D0 values recommended in the US FDA guidelines to comprehensively evaluate the solubility of evodiamine.The permeability of evodiamine was assessed using the apparent permeability coefficient in experiments based on in vitro cell models.Multiple aspects of the biological safety of PAMAM-co-PEG were explored using the MTT assay,LDH assay,and total protein release of the rat intestinal tract.Moreover,the absorption-enhancing effects of PAMAM-co-PEG at different molecular weights on evodiamine were verified via the use of in vitro cell models and in vivo intestinal loop circulation experiments with rats.Results:Evodiamine exhibited low solubility and permeability and was classified into class IV compounds using the biopharmaceutical classification system.PAMAM-co-PEG 2000 demonstrated improvement in the biosafety and absorption-enhancement effect of evodiamine at a specific concentration.This study showed that 0.05%(w/v)of PAMAM-co-PEG 2000 increased the cumulative penetration of evodiamine via cell transport by 1.32 times,and 0.10%(w/v)of PAMAM-co-PEG 2000 increased the area under curve value of evodiamine by 1.31 times.Conclusion:Evodiamine possesses low solubility and permeability and leads to poor oral bioavailability and a certain degree of cytotoxicity.PAMAM-co-PEG 2000 was found to be a potentially safe and efficient oral absorption enhancer.The results of this study might create a foundation for the development of novel excipients suitable for the complex active ingredients of traditional Chinese medicine.展开更多
In this study, 9 nm superparamagnetic iron oxide nanoparticles (SPION) were functionalized by polyamidoamine (PAMAM) dendrimer. Using tetracholoroauric acid (HAuCl4), magnetodendrimer (MD) samples were conjugated by g...In this study, 9 nm superparamagnetic iron oxide nanoparticles (SPION) were functionalized by polyamidoamine (PAMAM) dendrimer. Using tetracholoroauric acid (HAuCl4), magnetodendrimer (MD) samples were conjugated by gold nanoparticles (Au-NPs). Two different reducing agents, i.e. sodium borohydride and hydrazine sulfate, and pre-synthesized 10-nm Au-NP were used to evaluate the efficiency of conjugation method. The samples were characterized using X-ray diffractometry (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, UV-visible spectroscopy and fluorescence spectroscopy. The results confirmed that Au- NPs produced by sodium borohydrate and the pre-synthesized 10-nm Au-NPs were capped by MDs whereas the Au-NP prepared by hydrazine sulfate as a reducing agent was entrapped by MDs. Optical properties of the MDs were studied by laser-induced fluorescence spectroscopy (LIF) within a wide range of visible spectrum. Also, based on the thermal analysis, all synthesized nanostructures exhibited a temperature increase using 488 nm and 514 nm wavelengths of a tunable argon laser. The new iron oxide-dendrimer-Au NPs synthesized by sodium borohydrate (IDA- NaBH4) produced the highest temperature increase at 488 nm whereas the other nanostructures particularly pure Au-NPs produced more heating effect at 514 nm. These findings suggest the potential application of these nanocomposites in the field of bioimaging, targeted drug delivery and controlled hyperthermia.展开更多
An azyl group of ethylene diamine was protected by N-tert-butoxycarbonyl.The remaining azyl group then successively reacted with methyl acrylate, ethylene diamine and methyl acrylate again to afford the compound Boc-N...An azyl group of ethylene diamine was protected by N-tert-butoxycarbonyl.The remaining azyl group then successively reacted with methyl acrylate, ethylene diamine and methyl acrylate again to afford the compound Boc-NH 2-(B-COOCH 3) 4 3 (AB-4).The ester groups and the Boc-end group of 3 were transferred to carboxylate 4 and azyl group 5 via hydrolyzation and deprotection respectively.The fan-shape dendron molecules with 16 exterior groups 6 were obtained by condensation of 4 and 5 in the presence of DCC.The dumbbell-like dendrimer molecules 7 could expediently prepared by coupling the dendrons with two functional groups of hexanedioyl chloride.The paper describes the synthesis procedures,reports the characterization results of FTIR、 1H-NMR、 13C-NMR and MALDI-TOF.Comparing with the PAMAM dendrimers from the divergent method, the synthesized compounds possess accurate structures and few defections.展开更多
文摘ObjectivePolyamidoamine(PAMAM) dendrimers enhance the solubility of nicotinic acid. MethodsPAMAM dendrimers of generation 1 to 6 were prepared and the effect of pH and concentration of the dendrimers on the solubility enhancement of nicotinic acid was investigated. ResultsThe pH and concentration of the dendrimers influence the solubility enhancement of nicotinic acid. Conclusions Electrostatic interaction between the carboxyl group of the nicotinic acid and the amine groups of the dendrimers is involved.
基金This work was financially supported by the National Natural Science Foundation of China (No. 29875018) the Natural Science Foundation of Gansu Province (No. ZS991-A25-008-Z)the Doctorate Foundation of Northwestern Politech-nical University (No. CX200
文摘This paper described the first example of polyamidoamine dendrimers ester(PAMAM) used as a gel electrolyte with a short-chain polyethylene glycol (MPEG-400) as aplasticizer. The polymer films are solid and sticky. Background cyclic voltammetry (CV) shows apotential window between +0.7 and -0.7 V vs. Ag/AgCl. The voltammetry of ferrocene and7,7,8,8-tetracyanoquinodimethane (TCNQ) indicates that diffusion coefficients are in the range of10^(-8) -10^(-9) cm^2/s. Ionic conductivities are approximately 10^(-6) S/cm. Similar films usingdimethyl sulfoxide (DMSO) as a plasticizer instead of MPEG-400 have demonstrated ionicconductivities of 10^(-4) S/cm and reversible voltammetry. However, UV spectropho-tometry shows that70% of the DMSO is lost under vacuum, indicating the difficulty in quantifying the DMSO contentwhen exposed to vacuum.
基金Supported by the National Natural Science Foundation of China(No.20605009)
文摘The direct electron transfer of hemoglobin at the PAMAM-MWNTs-AuNPs composite film modified glassy carbon electrode was studied. In a phosphate buffer solution(PBS, pH=7.0), the formal potential(E^0) of Hb was -0.105 V versus SCE, the electron transfer rate constant was 4.66 s-1. E^0' of Hb at the modified electrode was linearly varied in a pH range of 5.0-8.0 with a slope of-49.2 mV/pH. The Hb/PAMAM-MWNTs-AuNPs/GCE gave an excellent electrocatalytic response to the reduction of hydrogen peroxide. The catalytic current increased linearly with H2O2 concentration in a range of 1.0× 10^-6 to 2.2× 10^-3 mol/L. The detection limit was 2.0× 10^-7 mol/L at a signal to noise ratio of 3. The Michaelis-Menten constant(Km^app) was 2.95 mmol/L.
文摘In this paper we report the peripheral functionalization of amine-terminated second generation poly(amidoamine) (PAMAM) with 9-anthracenecarboxalehyde and the preparation of dendrimer-encapsulated metal salts. The interesting different behaviors of these hybrid materials were observed by fluorescence and UV-Vis spectra.
基金This research was funded by National Major Scientific and Technological Special Project for“Significant New Drugs Development”(No.2015ZX09501005)Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences(No.2016-I2M-1-012).
文摘Background:Traditional Chinese medicine involves complex ingredients and mixtures of ingredients that often exhibit low bioavailability,and excipients are often lacking to increase the absorption-enhancing effects.This study modified the generation 4 polyamidoamine dendrimer with polyethylene glycol of different molecular weights(5000,2000,1000)to form a series of polyamidoamine-co-polyethylene glycol(PAMAM-co-PEG)as a novel class of oral absorption enhancers.Evodiamine,the major alkaloid found in the traditional Chinese medicine Wu Zhu Yu(Fructus Evodiae),was used as a model drug to verify the absorption-enhancing effects and the safety of this alkaloid.Methods:This study utilized the solubility determination method documented in the Pharmacopoeia of the People’s Republic of China(2015 edition)and the D0 values recommended in the US FDA guidelines to comprehensively evaluate the solubility of evodiamine.The permeability of evodiamine was assessed using the apparent permeability coefficient in experiments based on in vitro cell models.Multiple aspects of the biological safety of PAMAM-co-PEG were explored using the MTT assay,LDH assay,and total protein release of the rat intestinal tract.Moreover,the absorption-enhancing effects of PAMAM-co-PEG at different molecular weights on evodiamine were verified via the use of in vitro cell models and in vivo intestinal loop circulation experiments with rats.Results:Evodiamine exhibited low solubility and permeability and was classified into class IV compounds using the biopharmaceutical classification system.PAMAM-co-PEG 2000 demonstrated improvement in the biosafety and absorption-enhancement effect of evodiamine at a specific concentration.This study showed that 0.05%(w/v)of PAMAM-co-PEG 2000 increased the cumulative penetration of evodiamine via cell transport by 1.32 times,and 0.10%(w/v)of PAMAM-co-PEG 2000 increased the area under curve value of evodiamine by 1.31 times.Conclusion:Evodiamine possesses low solubility and permeability and leads to poor oral bioavailability and a certain degree of cytotoxicity.PAMAM-co-PEG 2000 was found to be a potentially safe and efficient oral absorption enhancer.The results of this study might create a foundation for the development of novel excipients suitable for the complex active ingredients of traditional Chinese medicine.
文摘In this study, 9 nm superparamagnetic iron oxide nanoparticles (SPION) were functionalized by polyamidoamine (PAMAM) dendrimer. Using tetracholoroauric acid (HAuCl4), magnetodendrimer (MD) samples were conjugated by gold nanoparticles (Au-NPs). Two different reducing agents, i.e. sodium borohydride and hydrazine sulfate, and pre-synthesized 10-nm Au-NP were used to evaluate the efficiency of conjugation method. The samples were characterized using X-ray diffractometry (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, UV-visible spectroscopy and fluorescence spectroscopy. The results confirmed that Au- NPs produced by sodium borohydrate and the pre-synthesized 10-nm Au-NPs were capped by MDs whereas the Au-NP prepared by hydrazine sulfate as a reducing agent was entrapped by MDs. Optical properties of the MDs were studied by laser-induced fluorescence spectroscopy (LIF) within a wide range of visible spectrum. Also, based on the thermal analysis, all synthesized nanostructures exhibited a temperature increase using 488 nm and 514 nm wavelengths of a tunable argon laser. The new iron oxide-dendrimer-Au NPs synthesized by sodium borohydrate (IDA- NaBH4) produced the highest temperature increase at 488 nm whereas the other nanostructures particularly pure Au-NPs produced more heating effect at 514 nm. These findings suggest the potential application of these nanocomposites in the field of bioimaging, targeted drug delivery and controlled hyperthermia.
文摘An azyl group of ethylene diamine was protected by N-tert-butoxycarbonyl.The remaining azyl group then successively reacted with methyl acrylate, ethylene diamine and methyl acrylate again to afford the compound Boc-NH 2-(B-COOCH 3) 4 3 (AB-4).The ester groups and the Boc-end group of 3 were transferred to carboxylate 4 and azyl group 5 via hydrolyzation and deprotection respectively.The fan-shape dendron molecules with 16 exterior groups 6 were obtained by condensation of 4 and 5 in the presence of DCC.The dumbbell-like dendrimer molecules 7 could expediently prepared by coupling the dendrons with two functional groups of hexanedioyl chloride.The paper describes the synthesis procedures,reports the characterization results of FTIR、 1H-NMR、 13C-NMR and MALDI-TOF.Comparing with the PAMAM dendrimers from the divergent method, the synthesized compounds possess accurate structures and few defections.