In order to effectively control the drug-release rate of medical textiles,biodegradable polycaprolactone(PCL) and polyglycolic acid(PGA) were blended at various mass ratios to prepare composite masterbatches for medic...In order to effectively control the drug-release rate of medical textiles,biodegradable polycaprolactone(PCL) and polyglycolic acid(PGA) were blended at various mass ratios to prepare composite masterbatches for medical textiles.The surface morphology and the chemical structure of the masterbatches were analyzed.The crystallization,mass losses,strengths and drug-release rates of the composite masterbatches at different PCL/PGA mass ratios were explored.The results show that the degradation rate of the PGA carrier is obvious higher than that of the PCL carrier,and PCL,PGA and the tea polyphenol(TP) drug just physically mix without chemical reaction.During the degradation,the strength of the composite masterbatches gradually decreases.In addition,the drug-release rates of composite masterbatches at different mass ratios are different,and the more the PGA in the composite masterbatches,the faster the drug release of the composite masterbatches.The drug-release rate of the composite masterbatches can be controlled by adjusting the contents of PCL and PGA.展开更多
Ultrafine polycaprolactone(PCL)fibers containing watersoluble drug tetracycline hydrochloride(Tet)were prepared by emulsion electrospinning.Sorbitan monooleate(Span80)was added as an essential additive to form stable ...Ultrafine polycaprolactone(PCL)fibers containing watersoluble drug tetracycline hydrochloride(Tet)were prepared by emulsion electrospinning.Sorbitan monooleate(Span80)was added as an essential additive to form stable water/oil emulsions and fabricate fibers with core-sheath structure.Different concentrations of Span80(0-40 g/L)were used to investigate the stability of emulsion and size of dispersed droplets.The scanning electron microscope(SEM)images indicated that the morphology of the fibers with Span80 were beaded-free with diameters of 200-400 nm,and Span80 enhanced the spinnability of electrospinning solution.The laser scanning confocal microscope(LSCM)images indicated that Tet was well encapsulated into the core region of the PCL fibers.The transmission electron microscope(TEM)image showed the formation of core-sheath structure.The loading efficiency(LE)and entrapment efficiency(EE)of Tet were calculated and release profiles in artificial saliva buffer solution(pH=6.8)were also analyzed.The results revealed that LE and EE of fibers with Span80decreased with the increase of its concentration.Fibers with coresheath structure had a longer effective release lifetime than without Span80.The increase of Span80 resulted in higher hydrophilicity of fibers and faster release rate of Tet.展开更多
The purpose of this work was to fabricate three-dimensional porous scaffolds by using the salt leaching technique.This technique is simple and it does not need the pressure or dislike expensive equipment.The study sel...The purpose of this work was to fabricate three-dimensional porous scaffolds by using the salt leaching technique.This technique is simple and it does not need the pressure or dislike expensive equipment.The study selected polycaprolactone blended with carboxymethylcellulose that is the additive.The ratios of them were derived from mixture design in Minitab program that was 98/2(P1),93.5/6.5(P2),89/11(P3),84.5/15.5(P4),and 80/20(P5),respectively.The scanning electron microscopy(SEM)was applied to assess the physical properties and the pore size dimension of the scaffold from SEM micrographs.The results of SEM present the scaffolds happened interconnected porous structures that are found in all of the P1-P5 samples.The pore size dimension of all sample scaffolds is in the range of 264.11-348.28μm.Whereas the largest and the smallest of pore size are the sample of P3 and P2,respectively,while the porosity ranges from 98.06%-98.88%that the sample of P5 is the greatest and the sample of P4 is the slightly lowest.In conclusion,the blended PCL/CMC scaffolds P1-P5 were formed by salt leaching technique suitable to use in tissue engineering application.However,the amount of CMC blended with PCL should be reasonable in order to adjust the hydrophilic of the scaffold.展开更多
Objective: To investigate the cytotoxicity and cytocompatibility of chitin fiber reinforced polycaprolactone composite in vitro in order to provide useful scientific basis for clinical application. Methods: Cell morph...Objective: To investigate the cytotoxicity and cytocompatibility of chitin fiber reinforced polycaprolactone composite in vitro in order to provide useful scientific basis for clinical application. Methods: Cell morphology observation, MTT and DNA assay were used to evaluate the influence of the composite on the morphology, growth and proliferation of cultured L-929 cells. Results: The composite did not impair the morphology of cultured cells in vitro. MTT and DNA assay demonstrated that the growth and proliferation of the cultured cells were not significantly inhibited by the composite. Conclusion : The composites have fine cytocompatibility and are safe for clinical use of reconstruction of chest wall defects.展开更多
This study investigated the characteristics of wood fiber/polycaprolactone composite after an artificial accelerated thermo-oxidative aging treatment.The effect of time,temperature and humidity during the treatment on...This study investigated the characteristics of wood fiber/polycaprolactone composite after an artificial accelerated thermo-oxidative aging treatment.The effect of time,temperature and humidity during the treatment on their mechanical,chemical and morphology properties were evaluated.The composite was prepared from melted wood fibers and modified polycaprolactone by a molding process.A temperature and humidity controllable test chamber was used for the thermo-oxidative aging of the composite.The thermo-oxidative aging caused surface of the composite to be much more rougher and even a few cracks and holes appeared on it.According to the spectra of Fourier Transform Infrared(FTIR)and Gel Permeation Chromatography(GPC),C=O in the molecular chain of polycaprolactone was hydrolyzed and C–O was broken after the aging treatment,which resulted in a reduction in average molecular weight of the composite.Moreover,results showed that the mechanical strength decreased a lot with the increase in time,temperature and humidity,and the effect of temperature and humidity was more significant compared with that of time.Controlling the temperature and humidity during thermo-oxidative aging treatment could accelerate the aging of composite,which provided a quick and effective method for evaluating the aging resistance of the composite.展开更多
Composite hernia meshes designed in this paper consist of polypropylene( PP) knitted meshes and polycaprolactone( PCL)nanofiber membranes,which are produced by electro-spinning the solution composed of PCL as a solute...Composite hernia meshes designed in this paper consist of polypropylene( PP) knitted meshes and polycaprolactone( PCL)nanofiber membranes,which are produced by electro-spinning the solution composed of PCL as a solute and the mixture of dimethylformamide( DMF) and dichloromethane( DCM) as a solvent. The morphology and diameter of nanofibers in the membrane are well performed when the 15% PCL solution is electrospun under the condition of 18 k V,15 cm,0. 7 m L/h. The poresize of the membranes is less than 10 μm, where such kinds of arrangement are extremely compact to prevent the cells from growing in. The mechanical properties of the membrane with better arrangement state can reach 68. 8 c N/mm^2. The cytotoxicity test of the composite mesh demonstrates the nontoxicity of the materials.However,the bonding fastness between the membrane and the PP mesh is extremely unsubstantial. The better ways to bond PP mesh with PCL membranes should be discussed in the future.展开更多
Disc-electrospinning using a disc as spinneret and a rotary drum as collector is a novel technology to prepare nanofiber which has been applied in tissue engineering scaffolds.In this study,nanofibrous mats with micro...Disc-electrospinning using a disc as spinneret and a rotary drum as collector is a novel technology to prepare nanofiber which has been applied in tissue engineering scaffolds.In this study,nanofibrous mats with micro-patterned structure were fabricated via disc-electrospinning.Poly( #-caprolactone)( PCL) was dissolved in trifluoroethanol( TFE) at various concentrations( 2%-7%)( w / v)for electrospinning and the applied voltage ranged from 40 to 70 kV.Scanning electron microscopy( SEM) was employed to observe the morphology of the nanofibrous scaffolds.SEM images illustrated that the nanofibers with beads formed micro-patterned structure such as triangles and other polygons.The average diameter of nanofibers presented various size with the concentration increased from 2% to 7%.The beads on the nanofibers constructed the vertexes of the polygons,while nanofibers bridged between adjacent vertexes.The concentration of solution and applied voltage may be two dominant factors to influence the topological structure of the nanofibrous scaffolds.Cells cultured on the micro-patterned scaffold spread along the edges of the polygons.The scaffold with patterned structure may have a promising application in tissue engineering.展开更多
基金Transformation and Guidance of Scientific and Technological Achievements in Shanxi Province,China(No.202104021301053)Fundamental Research Program of Shanxi Province,China(Nos. 20210302123114 and 202203021211146)+1 种基金Transformation of Scientific and Technological Achievements Programs of Higher Education Institutions in Shanxi Province,China(TSTAP)(No. 2020CG014)Open Project Program of Key Lab for Sport Shoes Upper Materials of Fujian Province,Fujian Huafeng New Material Co.,Ltd.,China(No.S SUM213)。
文摘In order to effectively control the drug-release rate of medical textiles,biodegradable polycaprolactone(PCL) and polyglycolic acid(PGA) were blended at various mass ratios to prepare composite masterbatches for medical textiles.The surface morphology and the chemical structure of the masterbatches were analyzed.The crystallization,mass losses,strengths and drug-release rates of the composite masterbatches at different PCL/PGA mass ratios were explored.The results show that the degradation rate of the PGA carrier is obvious higher than that of the PCL carrier,and PCL,PGA and the tea polyphenol(TP) drug just physically mix without chemical reaction.During the degradation,the strength of the composite masterbatches gradually decreases.In addition,the drug-release rates of composite masterbatches at different mass ratios are different,and the more the PGA in the composite masterbatches,the faster the drug release of the composite masterbatches.The drug-release rate of the composite masterbatches can be controlled by adjusting the contents of PCL and PGA.
基金“111 Project” Biomedical Textile Materials Science and Technology,China(No.B07024)
文摘Ultrafine polycaprolactone(PCL)fibers containing watersoluble drug tetracycline hydrochloride(Tet)were prepared by emulsion electrospinning.Sorbitan monooleate(Span80)was added as an essential additive to form stable water/oil emulsions and fabricate fibers with core-sheath structure.Different concentrations of Span80(0-40 g/L)were used to investigate the stability of emulsion and size of dispersed droplets.The scanning electron microscope(SEM)images indicated that the morphology of the fibers with Span80 were beaded-free with diameters of 200-400 nm,and Span80 enhanced the spinnability of electrospinning solution.The laser scanning confocal microscope(LSCM)images indicated that Tet was well encapsulated into the core region of the PCL fibers.The transmission electron microscope(TEM)image showed the formation of core-sheath structure.The loading efficiency(LE)and entrapment efficiency(EE)of Tet were calculated and release profiles in artificial saliva buffer solution(pH=6.8)were also analyzed.The results revealed that LE and EE of fibers with Span80decreased with the increase of its concentration.Fibers with coresheath structure had a longer effective release lifetime than without Span80.The increase of Span80 resulted in higher hydrophilicity of fibers and faster release rate of Tet.
文摘The purpose of this work was to fabricate three-dimensional porous scaffolds by using the salt leaching technique.This technique is simple and it does not need the pressure or dislike expensive equipment.The study selected polycaprolactone blended with carboxymethylcellulose that is the additive.The ratios of them were derived from mixture design in Minitab program that was 98/2(P1),93.5/6.5(P2),89/11(P3),84.5/15.5(P4),and 80/20(P5),respectively.The scanning electron microscopy(SEM)was applied to assess the physical properties and the pore size dimension of the scaffold from SEM micrographs.The results of SEM present the scaffolds happened interconnected porous structures that are found in all of the P1-P5 samples.The pore size dimension of all sample scaffolds is in the range of 264.11-348.28μm.Whereas the largest and the smallest of pore size are the sample of P3 and P2,respectively,while the porosity ranges from 98.06%-98.88%that the sample of P5 is the greatest and the sample of P4 is the slightly lowest.In conclusion,the blended PCL/CMC scaffolds P1-P5 were formed by salt leaching technique suitable to use in tissue engineering application.However,the amount of CMC blended with PCL should be reasonable in order to adjust the hydrophilic of the scaffold.
基金Supported by the Sci & Tech Development Foundation of Shang-hai (No. 024419076)
文摘Objective: To investigate the cytotoxicity and cytocompatibility of chitin fiber reinforced polycaprolactone composite in vitro in order to provide useful scientific basis for clinical application. Methods: Cell morphology observation, MTT and DNA assay were used to evaluate the influence of the composite on the morphology, growth and proliferation of cultured L-929 cells. Results: The composite did not impair the morphology of cultured cells in vitro. MTT and DNA assay demonstrated that the growth and proliferation of the cultured cells were not significantly inhibited by the composite. Conclusion : The composites have fine cytocompatibility and are safe for clinical use of reconstruction of chest wall defects.
基金The work was supported by National Key R&D Plan Project(2017YFD0601200)Hunan Key R&D Plan Project(2017SK2334)of College of Materials Science and Engineering,Central South University of Forestry and Technology.
文摘This study investigated the characteristics of wood fiber/polycaprolactone composite after an artificial accelerated thermo-oxidative aging treatment.The effect of time,temperature and humidity during the treatment on their mechanical,chemical and morphology properties were evaluated.The composite was prepared from melted wood fibers and modified polycaprolactone by a molding process.A temperature and humidity controllable test chamber was used for the thermo-oxidative aging of the composite.The thermo-oxidative aging caused surface of the composite to be much more rougher and even a few cracks and holes appeared on it.According to the spectra of Fourier Transform Infrared(FTIR)and Gel Permeation Chromatography(GPC),C=O in the molecular chain of polycaprolactone was hydrolyzed and C–O was broken after the aging treatment,which resulted in a reduction in average molecular weight of the composite.Moreover,results showed that the mechanical strength decreased a lot with the increase in time,temperature and humidity,and the effect of temperature and humidity was more significant compared with that of time.Controlling the temperature and humidity during thermo-oxidative aging treatment could accelerate the aging of composite,which provided a quick and effective method for evaluating the aging resistance of the composite.
基金Biomedical Textile Materials Science and Technology(111 Project),China(No.B07024)
文摘Composite hernia meshes designed in this paper consist of polypropylene( PP) knitted meshes and polycaprolactone( PCL)nanofiber membranes,which are produced by electro-spinning the solution composed of PCL as a solute and the mixture of dimethylformamide( DMF) and dichloromethane( DCM) as a solvent. The morphology and diameter of nanofibers in the membrane are well performed when the 15% PCL solution is electrospun under the condition of 18 k V,15 cm,0. 7 m L/h. The poresize of the membranes is less than 10 μm, where such kinds of arrangement are extremely compact to prevent the cells from growing in. The mechanical properties of the membrane with better arrangement state can reach 68. 8 c N/mm^2. The cytotoxicity test of the composite mesh demonstrates the nontoxicity of the materials.However,the bonding fastness between the membrane and the PP mesh is extremely unsubstantial. The better ways to bond PP mesh with PCL membranes should be discussed in the future.
基金National Natural Science Foundations of China,Science and Technology Comission of Shanghai Municipality,China,Ph.D.Programs Foundation of Ministry of Education of China
文摘Disc-electrospinning using a disc as spinneret and a rotary drum as collector is a novel technology to prepare nanofiber which has been applied in tissue engineering scaffolds.In this study,nanofibrous mats with micro-patterned structure were fabricated via disc-electrospinning.Poly( #-caprolactone)( PCL) was dissolved in trifluoroethanol( TFE) at various concentrations( 2%-7%)( w / v)for electrospinning and the applied voltage ranged from 40 to 70 kV.Scanning electron microscopy( SEM) was employed to observe the morphology of the nanofibrous scaffolds.SEM images illustrated that the nanofibers with beads formed micro-patterned structure such as triangles and other polygons.The average diameter of nanofibers presented various size with the concentration increased from 2% to 7%.The beads on the nanofibers constructed the vertexes of the polygons,while nanofibers bridged between adjacent vertexes.The concentration of solution and applied voltage may be two dominant factors to influence the topological structure of the nanofibrous scaffolds.Cells cultured on the micro-patterned scaffold spread along the edges of the polygons.The scaffold with patterned structure may have a promising application in tissue engineering.