We synthesize a set of Pd-doped polycrystalline samples PdxNdSeTe2 and measure their physical properties. Compared with pure NdSeTe2, the charge density wave (CDW) order is continuously suppressed with the Pdinterca...We synthesize a set of Pd-doped polycrystalline samples PdxNdSeTe2 and measure their physical properties. Compared with pure NdSeTe2, the charge density wave (CDW) order is continuously suppressed with the Pdintercalation. Bulk superconductivity first appears at x = 0.06 with Tc nearly 2.5I〈, coexisting with a CDW transition at 176K. Further Pd-doping enhances Tc, until it reaches the maximum value 2.84K at x=0.1, meanwhile the CDW transition vanishes. The upper critical field for the optimal doping sample Pdo.lNdSeTe2 is determined from the R-H measurement, which is estimated to be 0.6 T. These results provide another kind of ideal compound for studying the interplay between CDW and superconductivity systematically.展开更多
基金Supported by the National Basic Research Program of China under Grant No 2015CB921303the Strategic Priority Research Program(B) of the Chinese Academy of Sciences under Grant No XDB07020100
文摘We synthesize a set of Pd-doped polycrystalline samples PdxNdSeTe2 and measure their physical properties. Compared with pure NdSeTe2, the charge density wave (CDW) order is continuously suppressed with the Pdintercalation. Bulk superconductivity first appears at x = 0.06 with Tc nearly 2.5I〈, coexisting with a CDW transition at 176K. Further Pd-doping enhances Tc, until it reaches the maximum value 2.84K at x=0.1, meanwhile the CDW transition vanishes. The upper critical field for the optimal doping sample Pdo.lNdSeTe2 is determined from the R-H measurement, which is estimated to be 0.6 T. These results provide another kind of ideal compound for studying the interplay between CDW and superconductivity systematically.