期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
New Vitrified Bond Diamond Grinding Wheel for Grinding the Cylinder of Polycrystalline Diamond Compacts 被引量:7
1
作者 Xiaofu ZHANG Anxian LU Yu WANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第5期672-676,共5页
In this work, a kind of new vitrified bond based on Li2O-Al2O3-SiO2 glass ceramics was used to bond the diamond grains, which is made into grinding wheel and the cylindrical grinding process of polycrystalline diamond... In this work, a kind of new vitrified bond based on Li2O-Al2O3-SiO2 glass ceramics was used to bond the diamond grains, which is made into grinding wheel and the cylindrical grinding process of polycrystalline diamond compacts (PDCs) by using the new vitrified bond diamond grinding wheel was discussed. Several factors which influence the properties of grinding wheel such as amount of vitrified bond and the kinds and amount of stuff in grinding wheel were also investigated. It was found that the new vitrified bond can firmly combine diamond grains, when there are only diamonds and vitrified bond in the structure of grinding wheel, the longevity of the grinding wheel is about 2.5-3 times as that of resin bond grinding wheel for processing PDCs. The grinding size precision of PDCs can be improved from 4-0.03 mm to 4-0.01 mm because of larger Young's modulus of vitrified bond than resin bond. The grinding time of a PDC product can be 1.75-2.0 min from 3.25-3.5 min, so this kind of grinding wheel can save much time for processing PDCs. Also, there is hardly noise when using this new vitrified bond diamond grinding wheel to process PDCs. The amount of vitrified bond in grinding wheel influences the longevity of grinding wheel. When the size of diamond grains is 90-107 μm, the optimal amount of vitrified bond in grinding wheel is 21% (wt pct). When the amount of vitrified bond exceeds 21%, there are many pores in grinding block, which will decrease the longevity of grinding wheel. The existence of addition stuff such as Al2O3 or SiC can reduce the longevity of grinding wheel. 展开更多
关键词 polycrystalline diamond compact (PDC) Vitrified bond diamond grinding wheel
下载PDF
A large-grain-size thick-film polycrystalline diamond detector for x-ray detection 被引量:1
2
作者 许平 余羿 +1 位作者 周海洋 邱长军 《Plasma Science and Technology》 SCIE EI CAS CSCD 2020年第12期97-103,共7页
A diamond film with a size of 6×6×0.5 mm^3 is fabricated by electron-assisted chemical vapor deposition. Raman spectrum analysis, x-ray diffraction and scanning electron microscope images confirm the high pu... A diamond film with a size of 6×6×0.5 mm^3 is fabricated by electron-assisted chemical vapor deposition. Raman spectrum analysis, x-ray diffraction and scanning electron microscope images confirm the high purity and large grain size, which is larger than 300 μm. Its resistivity is higher than 10^12 W· cm. Interlaced-finger electrodes are imprinted onto the diamond film to develop an x-ray detector. Ohmic contact is confirmed by checking the linearity of its current–voltage curve. The dark current is lower than 0.1 n A under an electric field of 30 k V cm^-1. The time response is 220 ps. The sensitivity is about 125 m A W^-1 under a biasing voltage of 100 V.A good linear radiation dose rate is also confirmed. This diamond detector is used to measure x-ray on a Z-pinch, which has a double-layer 'nested tungsten wire array'. The pronounced peaks in the measured waveform clearly characterize the x-ray bursts, which proves the performance of this diamond detector. 展开更多
关键词 polycrystalline diamond film x-ray detector electron-assisted chemical vapor deposition
下载PDF
Enhanced oxidation and graphitization resistance of polycrystalline diamond sintered with Ti-coated diamond powders 被引量:6
3
作者 Xiaohua Sha Wen Yue +3 位作者 Haichao Zhang Wenbo Qin Dingshun She Chengbiao Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第8期64-73,共10页
To improve the oxidation and graphitization resistances of the polycrystalline diamond(PCD), Ti coating was deposited on the diamond powders via magnetic sputtering method, which achieved a uniform Ti C protection bar... To improve the oxidation and graphitization resistances of the polycrystalline diamond(PCD), Ti coating was deposited on the diamond powders via magnetic sputtering method, which achieved a uniform Ti C protection barrier in PCD during the sintering process. The phase compositions, microstructures and thermal stability of Ti-PCD were characterized by X-ray diffraction(XRD), Auger electron spectroscopy(AES),scanning electron microscopy(SEM) and thermal gravimetric-differential scanning calorimetry(TG-DSC).The results demonstrate that the oxidation and graphitization resistances of PCD are strengthened due to the existence of Ti C phase, which acts as an effective inhibitor. The as-received inhibitor delays the oxidation and graphitization of PCD, elevating their initial temperature by ~50°C and ~100°C, respectively. During the annealing treatment of Ti-PCD, the priory oxidation of Ti C, which produces Ti O2 as an oxygen barrier, postpones the diamond oxide. Moreover, the Ti C barrier also protects diamond grains from direct contact with cobalt, thus a lower cobalt-catalytic graphitization, and yields to an improved graphitization resistance of PCD. The enhanced oxidation and graphitization resistances of PCD are of significant importance for practical applications to elevated temperatures. 展开更多
关键词 polycrystalline diamond Ti-coated diamond powder TiC barrier Oxidation resistance Graphitization resistance
原文传递
Growth of 4" diameter polycrystailine diamond wafers with high thermal conductivity by 915 MHz microwave plasma chemical vapor deposition 被引量:1
4
作者 A F POPOVICH V G RALCHENKO +6 位作者 V K BALLA A K MALLIK A A KHOMICH A P BOLSHAKOV D N SOVYK E E ASHKINAZI V Yu YUROV 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第3期93-97,共5页
Polycrystalline diamond(PCD) films 100 mm in diameter are grown by 915 MHz microwave plasma chemical vapor deposition(MPCVD) at different process parameters,and their thermal conductivity(TC) is evaluated by a l... Polycrystalline diamond(PCD) films 100 mm in diameter are grown by 915 MHz microwave plasma chemical vapor deposition(MPCVD) at different process parameters,and their thermal conductivity(TC) is evaluated by a laser flash technique(LFT) in the temperature range of230-380 K.The phase purity and quality of the films are assessed by micro-Raman spectroscopy based on the diamond Raman peak width and the amorphous carbon(a-C) presence in the spectra.Decreasing and increasing dependencies for TC with temperature are found for high and low quality samples,respectively.TC,as high as 1950 ± 230 W m-1 K-1 at room temperature,is measured for the most perfect material.A linear correlation between the TC at room temperature and the fraction of the diamond component in the Raman spectrum for the films is established. 展开更多
关键词 thermal conductivity polycrystalline diamond microwave plasma chemical vapordeposition Raman spectroscopy
下载PDF
Multiple enlarged growth of single crystal diamond by MPCVD with PCD-rimless top surface
5
作者 任泽阳 刘俊 +4 位作者 苏凯 张金风 张进成 许晟瑞 郝跃 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第12期352-357,共6页
We report the simultaneous enlarged growth of seven single crystal diamond(SCD) plates free from polycrystalline diamond(PCD) rim by using a microwave plasma chemical vapor deposition(MPCVD) system. Optical microscope... We report the simultaneous enlarged growth of seven single crystal diamond(SCD) plates free from polycrystalline diamond(PCD) rim by using a microwave plasma chemical vapor deposition(MPCVD) system. Optical microscope and atomic force microscope(AFM) show the typical step-bunching SCD morphology at the center, edge, and corner of the samples. The most aggressively expanding sample shows a top surface area three times of that of the substrate. The effective surface expanding is attributed to the utilization of the diamond substrates with(001) side surfaces, the spacial isolation of them to allow the sample surface expanding, and the adoption of the reported pocket holder. Nearly constant temperature of the diamond surfaces is maintained during growth by only decreasing the sample height, and thus all the other growth parameters can be kept unchanged to achieve high quality SCDs. The SCDs have little stress as shown by the Raman spectra. The full width at half maximum(FWHM) data of both the Raman characteristic peak and(004) x-ray rocking curve of the samples are at the same level as those of the standard CVD SCD from Element Six Ltd. The nonuniformity of the sample thickness or growth rate is observed, and photoluminescence spectra show that the nitrogen impurity increases with increasing growth rate. It is found that the reduction of the methane ratio in the sources gas flow from 5% to 3% leads to decrease of the vertical growth rate and increase of the lateral growth rate. This is beneficial to expand the top surface and improve the thickness uniformity of the samples. At last, the convenience of the growth method transferring to massive production has also been demonstrated by the successful simultaneous enlarged growth of 14 SCD samples. 展开更多
关键词 diamond chemical vapour deposition crystal growth expanded top surface polycrystalline diamond rimless
下载PDF
Effect of Argon Addition on Morphology and Structure of Diamond Films(from Microcrystalline to Nanocrystalline)
6
作者 吕琳 汪建华 +2 位作者 翁俊 崔晓慧 张莹 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第3期216-220,共5页
Micro-/nanocrystalline diamond films deposited in Ar/H2/CH4 microwave plasmas have been studied, with argon flow rates in the range of 70-100 sccm. The effects of argon addition on morphology, surface roughness, quali... Micro-/nanocrystalline diamond films deposited in Ar/H2/CH4 microwave plasmas have been studied, with argon flow rates in the range of 70-100 sccm. The effects of argon addition on morphology, surface roughness, quality and structure were investigated by scanning electron microscopy, surface profiler, Raman spectrometer and X-ray diffraction (XRD). It is demonstrated that when the argon flow rate is 70 sccm or 75 sccm, well-faceted polycrystalline diamond films can be grown at a low substrate temperature less than 610 ~C. With the increase in the argon flow rate, the smooth crystallographic planes disappear gradually. Instead, rough crystallographic planes made up of small aggregates begin to take shape, resulting from the increase in the secondary nucleation rate. Nanocrystalline diamond films were obtained at a flow rate of 100 sccm, and all of the prepared diamond films were smooth, with a surface roughness (Ra) less than 20 nm. Raman analyses reveal that the amount of amorphous carbon increases significantly with the increase in argon flow. The results of XRD show that crystalline size and preferential orientation of diamond films depend on the argon content in the plasmas. 展开更多
关键词 polycrystalline diamond nanocrystalline diamond argon addition low tern perature microwave plasmas
下载PDF
激光-PDC钻头联合破岩机理及特性研究
7
作者 黄志强 梁耀文 +2 位作者 陈科 翟预立 雷雨薇 《工程设计学报》 CSCD 北大核心 2023年第3期315-324,共10页
随着我国油气勘探逐步向深层、超深层和复杂难钻岩层转移,现有的机械钻头存在着破岩效率低及作业成本高等问题。因此,提出了一种新型激光-PDC钻头,以实现高效破岩和节能降耗。采用有限元方法,基于岩石HJC(Holmquist-Johnson-Cook)本构模... 随着我国油气勘探逐步向深层、超深层和复杂难钻岩层转移,现有的机械钻头存在着破岩效率低及作业成本高等问题。因此,提出了一种新型激光-PDC钻头,以实现高效破岩和节能降耗。采用有限元方法,基于岩石HJC(Holmquist-Johnson-Cook)本构模型,建立了激光-PDC(polycrystalline diamond compact,聚晶金刚石复合片)钻头联合破岩非线性动力学模型,开展了激光-PDC钻头联合破岩仿真研究。仿真结果表明:激光的辐射作用使岩石表面受辐射区域产生了较高的温度和较大的预应力,进而在岩石表面形成了相互贯穿的损伤带,降低了岩石强度,更有利于切削齿破碎岩石;与无激光单PDC钻头相比,激光-PDC钻头在破岩过程中受到的反扭矩降低了24.8%,钻头轴向加速度波动幅度降低了10.5%,钻进位移增加了8.67 mm,钻进速度提升了112.79%。搭建了激光-机械联合破岩实验台架,进行了激光-PDC钻头联合破岩实验。实验结果表明,激光-PDC钻头联合破岩有着更好的钻进稳定性和连续性,大大提高了破岩效率。研究结果为激光-机械破岩技术的发展和应用提供了一定的理论支撑和技术支持。 展开更多
关键词 激光-PDC(polycrystalline diamond compact 聚晶金刚石复合片)钻头 联合破岩 激光辐射 破岩特性
下载PDF
Energy beam-based direct and assisted polishing techniques for diamond:A review
8
作者 Zhuo Li Feng Jiang +7 位作者 Zhengyi Jiang Zige Tian Tian Qiu Tao Zhang Qiuling Wen Xizhao Lu Jing Lu Hui Huang 《International Journal of Extreme Manufacturing》 SCIE EI CAS 2024年第1期93-124,共32页
Diamond is a highly valuable material with diverse industrial applications,particularly in the fields of semiconductor,optics,and high-power electronics.However,its high hardness and chemical stability make it difficu... Diamond is a highly valuable material with diverse industrial applications,particularly in the fields of semiconductor,optics,and high-power electronics.However,its high hardness and chemical stability make it difficult to realize high-efficiency and ultra-low damage machining of diamond.To address these challenges,several polishing methods have been developed for both single crystal diamond(SCD)and polycrystalline diamond(PCD),including mechanical,chemical,laser,and ion beam processing methods.In this review,the characteristics and application scope of various polishing technologies for SCD and PCD are highlighted.Specifically,various energy beam-based direct and assisted polishing technologies,such as laser polishing,ion beam polishing,plasma-assisted polishing,and laser-assisted polishing,are summarized.The current research progress,material removal mechanism,and infuencing factors of each polishing technology are analyzed.Although some of these methods can achieve high material removal rates or reduce surface roughness,no single method can meet all the requirements.Finally,the future development prospects and application directions of different polishing technologies are presented. 展开更多
关键词 single crystal diamond polycrystalline diamond energy beam polishing technology material removal mechanism influencing factors
下载PDF
Effect of tungsten carbide particles on microstructure and mechanical properties of Cu alloy composite bit matrix
9
作者 Ding-qian Dong Feng-yuan He +5 位作者 Xin-hui Chen Hui Li Kai-hua Shi Hui-wen Xiong Xin Xiang Li Zhang 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2024年第2期519-530,共12页
Copper alloy composite bit matrix was prepared by pressureless vacuum infiltration,using at least one of the three kinds of tungsten carbide particles,for example,irregular cast tungsten carbide,monocrystalline tungst... Copper alloy composite bit matrix was prepared by pressureless vacuum infiltration,using at least one of the three kinds of tungsten carbide particles,for example,irregular cast tungsten carbide,monocrystalline tungsten carbide and sintered reduced tungsten carbide particles.The effects of powder particle morphology,particle size and mass fraction of tungsten carbide on the microstructure and mechanical properties of copper alloy composite were investigated by means of scanning electron microscopy,X-ray diffraction and abrasive wear test in detail.The results show that tungsten carbide morphology and particle size have obvious effects on the mechanical properties of copper alloy composites.Cast tungsten carbide partially dissolved in the copper alloy binding phase,and layers of Cu_(0.3)W_(0.5)Ni_(0.1)Mn_(0.1)C phase with a thickness of around 8–15μm were formed on the edge of the cast tungsten carbide.When 45%irregular crushed fine cast tungsten carbide and 15%monocrystalline cast tungsten carbide were used as the skeleton,satisfactory comprehensive performance of the reinforced copper alloy composite bit matrix was obtained,with the bending strength,impact toughness and hardness reaching 1048 MPa,4.95 J/cm^(2) and 43.6 HRC,respectively.The main wear mechanism was that the tungsten carbide particles firstly protruded from the friction surface after the copper alloy matrix was worn,and then peeled off from the matrix when further wear occurred. 展开更多
关键词 polycrystalline diamond compact Pressureless vacuum infiltration Copper alloy composite bit matrix Microstructure characterization Abrasive wear behavior
原文传递
Experimental study on the meso-scale milling of tungsten carbide WC-17.5Co with PCD end mills 被引量:2
10
作者 Wei Zhao Asif Iqbal +2 位作者 Ding Fang Ning He Qi Yang 《Advances in Manufacturing》 SCIE CAS CSCD 2020年第2期230-241,共12页
Tungsten carbide is a material that is very difficult to cut,mainly owing to its extreme wear resistance.Its high value of yield strength,accompanied by extreme brittleness,renders its machinability extremely poor,wit... Tungsten carbide is a material that is very difficult to cut,mainly owing to its extreme wear resistance.Its high value of yield strength,accompanied by extreme brittleness,renders its machinability extremely poor,with most tools failing.Even when cutting with tool materials of the highest quality,its mode of cutting is mainly brittle and marred by material cracking.The ductile mode of cutting is possible only at micro leveIs of depth of cut and feed rate.This study aims to investigate the possibility of milling the carbide material at a meso-scale using polycrystaline diamond(PCD)end mills.A series of end milling experiments were performed to study the effects of cutting speed,feed per tooth,and axial depth of cut on performance measures such as cutting forces,surface roughness,and tool wear.To characterize the wear of PCD tools,a new approach to measuring the level of damage sustained by the faces of the cutter's teeth is presented.Analyses of the experimental data show that the effects of all the cutting parameters on the three performance measures are significant.The major damage mode of the PCD end mills is.found to be the intermittent micro-chipping.The progress of tool damage saw a long,stable,and steady period sandwiched between two short,abrupt,and intermittent periods.Cutting forces and surface roughness are found to rise with increments in the three cutting parameters,although the latter shows signs of reduction during the initial increase in cutting speed only.The results of this study find that an acceptable surface quality(average roughness Ra<0.2μm)and tool life(cutting length L>600mm)can be obtained under the conditions of the given cutting parameters.It indicates that milling with PCD tools at a meso-scale is a suitable machining method for tungsten carbides. 展开更多
关键词 Tungsten carbide Meso-scale milling polycrystalline diamond(PCD)end mill Cutting force Surface roughness Tool wear
原文传递
Tool geometry based prediction of critical thrust force while drilling carbon fiber reinforced polymers 被引量:2
11
作者 Y. Karpat O. Bahtiyar 《Advances in Manufacturing》 SCIE CAS CSCD 2015年第4期300-308,共9页
Carbon fiber reinforced polymers (CFRPs) are known to be difficult to cut due to the abrasive nature of carbon fibers and the low thermal conductivity of the polymer matrix. Polycrystalline diamond (PCD) drills ar... Carbon fiber reinforced polymers (CFRPs) are known to be difficult to cut due to the abrasive nature of carbon fibers and the low thermal conductivity of the polymer matrix. Polycrystalline diamond (PCD) drills are commonly employed in CFRP drilling to satisfy hole quality conditions with an acceptable tool life. Drill geometry is known to be influential on the hole quality and productivity of the process. Considering the variety of CFRP laminates and available PCD drills on the market, selecting the suitable drill design and process parameters for the CFRP material being machined is usually per- formed through trial and error, In this study, machining performances of four different PCD drills are investigated. A mechanistic model of drilling is used to reveal trade-offs in drill designs and it is shown that it can be used to select suitable feed rate for a given CFRP drilling process. 展开更多
关键词 MACHINING Drilling - Carbon fiber reinforced polymer (CFRP) polycrystalline diamond (PCD) DELAMINATION
原文传递
Three-dimensional Numerical Prediction of the Flow and Temperature Field at the Surface of a PDC Bit
12
作者 崔桂香 徐巍然 张兆顺 《Tsinghua Science and Technology》 SCIE EI CAS 1998年第2期35-39,共5页
This paper provides a mathematical model and numerical method for predicting the velocity and temperature fields in the mud flows at the surface of a PDC (Polycrystalline Diamond Compact) bit. A 81/2' ( 21 59cm... This paper provides a mathematical model and numerical method for predicting the velocity and temperature fields in the mud flows at the surface of a PDC (Polycrystalline Diamond Compact) bit. A 81/2' ( 21 59cm ) crown type PDC R bit is used as an example. The complex configuration of the PDC bit surface is resolved numerically using body fitting coordinates and the cutters are simplified as drag elements in the momentum equations and as heat source in the energy equation. The finite volume method is used to discretize the momentum and energy equations for the non Newtonian flow. The numerical results effectively predict the flow structure and temperature field which can be used to design and optimize the PDC bit. 展开更多
关键词 numerical simulation non Newtonian fluid flow PDC (polycrystalline diamond Compact) bit
原文传递
Using Raman shift and FT-IR spectra as quality indices of oil bit PDC cutters
13
作者 Rafid KAbbas Kanaan Mohammad Musa 《Petroleum》 CSCD 2019年第3期329-334,共6页
Nowadays many of oil and gas wells are drilled extensively by Polycrystalline Diamond Compact(PDC)drill bits.Various companies are manufacturing PDC cutters according to their usage.All of these companies concentrate ... Nowadays many of oil and gas wells are drilled extensively by Polycrystalline Diamond Compact(PDC)drill bits.Various companies are manufacturing PDC cutters according to their usage.All of these companies concentrate their products of PDC cutters to be well resisting for abrasive wear.The wear of PDC inserts leads to money loss as well as delays the drilling procedures causing unexpected dilemmas.Therefore,it is crucially significant to evaluate the quality of the PDC cutters based on their resistance against abrasive wear.The present work concentrates on assessing the PDC cutters from various sources using two non-destructive analytical approaches:Raman-Shift and Fourier Transformation Infrared Ray(FT-IR)spectra.The analysis of the PDC samples with the analytical techniques were validated with the previous experimental results obtained from micro and nano-scratch tests achieved on the same specimens.The presented work could be performed on many PDC cutters from various manufacturers as the applied tests considered non-destructive compared to the traditional destructive techniques which leads the way for evaluating lots of PDC cutters without causing any damage.The analysis of the applied analytical approaches agreed with the results obtained from previous experimental scratch tests. 展开更多
关键词 Raman-shift FT-IR polycrystalline diamond compact(PDC) Drill bit wear
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部