期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Au@Ag Core-shell Nanorods Self-assembled on Polyelectrolyte Multilayers for Ultra-High Sensitivity SERS Fiber Probes
1
作者 王文博 XIONG Wenhao +1 位作者 LONG Yuting 李宏 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期505-513,共9页
We demonstrated a chemical process in the fabrication of a SERS fiber probe with an ultrahigh sensitivity.The synthesis was carried out by preparing Au@Ag core-shell nanorods (Au@Ag-NRs) selfassembled on polyelectroly... We demonstrated a chemical process in the fabrication of a SERS fiber probe with an ultrahigh sensitivity.The synthesis was carried out by preparing Au@Ag core-shell nanorods (Au@Ag-NRs) selfassembled on polyelectrolyte (PE) multilayers,for which Au@Ag-NRs were controlled by adjusting the silver layer thickness.The effect of silver layer thickness of Au@Ag-NRs on the SERS performance of the fiber probe was investigated.The SERS fiber probe shows the best performance when the silver layer thickness is controlled at 8.57 nm.Under the condition of optimizing silver layer thickness,the fiber probe exhibits ultra-high sensitivity (i e,10^(-10) M crystalline violet,CV),good reproducibility (i e,RSD of 3.5%) and stability.Besides,electromagnetic field distribution of the SERS fiber probe was also investigated.The strongest enhancement is found within the core of fiber,whereas a weakened electromagnetic field exists in the fiber cladding layer.The SERS fiber probe can be a good candidate in ultra-trace detection for biomedical and environmental areas. 展开更多
关键词 surface-enhanced Raman scattering(SERS) optical fiber probe self-assembly Au@Ag core-shell nanorods(Au@Ag-NRs) polyelectrolyte multilayers
下载PDF
Probing surface interactions of underwater oleophobic polyelectrolyte multilayers 被引量:1
2
作者 Kai Li Wei Wang +7 位作者 Zhi-Peng Yu Hang Jin Yun-Tong Ge Wei-Wei Gao Fan Xiao Hui-Rong Huang Ze-Heng Peng Jing Gong 《Petroleum Science》 SCIE CAS CSCD 2021年第1期307-321,共15页
In the present work,the interaction mechanism of specific polyelectrolyte multilayers(PEMs),fabricated by layer-by-layer deposition of polydiallyldimethylammonium chloride(PDDA)and poly(sodium 4-styrenesulfonate)(PSS)... In the present work,the interaction mechanism of specific polyelectrolyte multilayers(PEMs),fabricated by layer-by-layer deposition of polydiallyldimethylammonium chloride(PDDA)and poly(sodium 4-styrenesulfonate)(PSS),is studied using atomic force microscopy.The underwater oil-repellency of PS S-capped PEMs was further explored by measuring the interaction forces between tetradecane droplets and PEMs-coated silica substrates under various salinities.The force curves were analyzed following the Stokes-Reynolds-Young-Laplace theoretical model.Desirable consistency was achieved between the experimental and theoretical calculations at low NaCl concentrations(0.1 mM and 1 mM);however,underestimation of the attractive force was found as the NaCl concentration increases to moderate(10 mM)and high(100 mM)levels.Discrepancy analyses and incorporated features toward a reduced surface charge density were considered based on the previous findings of the orientation of anionic benzenesulfonate moieties(Liu et al.in Angew Chem Int Ed 54(16):4851-4856,2015.https://doi.org/10.1002/anie.201411992).Short-range steric hindrance interactions were further introduced to simulate"brush"effect stemming from nanoscale surface roughness.It is demonstrated in our work that the PSS-capped PEMs remains a stable underwater lipophobicity against high salinity,which renders it potential application in surface wetting modification and anti-fouling. 展开更多
关键词 Lipophobicity SALINITY AFM polyelectrolyte multilayers Surface roughness
下载PDF
Fiber Optic Humidity Sensor Based on Self-Assembled Polyelectrolyte Multilayers
3
作者 余海湖 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2001年第3期65-69,共5页
Polyelectrolyte multilayers were self-assembled onto planar glass substrates and multimode optic fibers. The multilayer thin films deposited on glass substrates were characterized by using UV-vis spectroscopy and X-ra... Polyelectrolyte multilayers were self-assembled onto planar glass substrates and multimode optic fibers. The multilayer thin films deposited on glass substrates were characterized by using UV-vis spectroscopy and X-ray photoelectron spectroscope. The multilayer thin films containing hydrophilic side-groups possessed are affinity for uwer molecules. The adsorption and desorption of free water vapor gave rise to the changes in the refractive index and in the reflectance of the thin films. A multilayer thin film based fiber optic humidity sensor with an LED light source of 0.85 mum was designed. Under certain conditions, the rejected light intensity of the thin film sensor was a function of the humidity of air. About 30 bilayers was optimal for the multilayer thin film sensor working at wavelength of 0.85 mum. This sensor can work over almost the whole relative humidity range with very good sensitivity. 展开更多
关键词 fiber optic sensor humidity SELF-ASSEMBLY polyelectrolyte multilayer thin film
下载PDF
Polyelectrolyte Multilayer Patterns Created by Capillary Force and Their Impact on Cell Migration 被引量:1
4
作者 Lulu Han Jindan Wu +3 位作者 Tanchen Ren Zhengwei Mao Yang Guo Changyou Gao 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2014年第1期66-72,共7页
Cell migration plays a crucial role in a variety of physiological and pathological processes.In this study a method of capillary force lithography was used to treat poly(sodium 4-styrenesulfonate) (PSS)/poly(diallyldi... Cell migration plays a crucial role in a variety of physiological and pathological processes.In this study a method of capillary force lithography was used to treat poly(sodium 4-styrenesulfonate) (PSS)/poly(diallyldimethylammonium) chloride (PDADMAC) multilayers with a PDMS stamp before or after etching by NaC1 solution,yielding physical patterns with various features such as double thin lines,double strips,meniscus-shaped ridges,and high ridges.The ridge height is controllable in the range of 25 and 1100 nm.Migration of smooth muscle cells (SMCs) was restrained by the double-line patterns in a ridge height-dependent manner.By contrast,the mobility of SMCs was controlled by both the hydration ratio of the multilayers and the pattern features. 展开更多
关键词 capillary force lithography polyelectrolyte multilayer cell migration ridge height salt etching
原文传递
Controllable Synthesis of Au NRs and Its Flexible SERS Optical Fiber Probe with High Sensitivity
5
作者 熊文豪 WANG Wenbo +1 位作者 LONG Yuting 李宏 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期7-16,共10页
The surface-enhanced Raman scattering(SERS) optical fiber probes were successfully prepared by self-assembling on polyelectrolyte multilayers. Gold nanorods(Au NRs) were used as SERS enhancement material to give excel... The surface-enhanced Raman scattering(SERS) optical fiber probes were successfully prepared by self-assembling on polyelectrolyte multilayers. Gold nanorods(Au NRs) were used as SERS enhancement material to give excellent biological affinity and stability to the SERS optical fiber probes. Au NRs were synthesized by seed growth method. The synergistic effect between AgNO_(3) and surfactant was investigated, and the highest yield was found when AgNO_(3) was 500 uL. Meanwhile, different SERS optical fiber probes were obtained by selecting silane coupling agent, polyelectrolyte multilayer and graphene oxide(GO) to treat quartz fiber. It was found that the SERS optical fiber probes obtained by the self-assembled on polyelectrolyte multilayers method performed better than those by other methods. In addition, Mapping was combined with finite element simulation to analyze the electromagnetic field distribution at the fiber end face.The electromagnetic field distribution of Au NRs was investigated, the difference of electromagnetic field intensity around the Au NRs with different arrangements was compared, the strongest signal was obtained when the Au NRs were head-to-head. Finally, sensitivity of the optimized SERS optical fiber probes could reach 10^(-9)mol/L, with excellent stability and repeatability. 展开更多
关键词 surface-enhanced Raman scattering(SERS) optical fiber probe gold nanorods(Au NRs) polyelectrolyte multilayers controllable synthesis
下载PDF
In situ Molecular Self-assembly and Sensitive Label-free Detection of Streptavidin via a Wavelength Interrogated Surface Plasmon Resonance Sensor 被引量:2
6
作者 YU Yong-jiang ZHOU Ying +7 位作者 LI Qiu-shun YANG Yan SHI Jian-guo LI Ming-yu YAO Wei-guo WANG Jun-nan DONG Wen-fei QI Zhi-mei 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2013年第6期1219-1224,共6页
The sensing sensitivity of wavelength interrogated surface plasmon resonance(WISPR) biosensor is improved by self-assembly of polyelectrolyte multilayer(PEM) film of poly(allylamine hydrochloride)(PAH)/ poly(... The sensing sensitivity of wavelength interrogated surface plasmon resonance(WISPR) biosensor is improved by self-assembly of polyelectrolyte multilayer(PEM) film of poly(allylamine hydrochloride)(PAH)/ poly(sodium-p-styrenesulfonate)(PSS) on the Au film coated glass chip via the layer-by-layer(LBL) technique. The home-made WISPR with Krestchmann configuration consists of a tungsten-halogen lamp as a photon source and a charge coupled device(CCD) camera as the detector. The influence of PEM film thickness on the optical properties of WISPR biosensors was investigated theoretically and experimentally. In order to achieve higher sensing sensitivity, the PEM film thickness has to be designed as ca.14 nm at an Au layer thickness of 50 nm and an incidental angle of 11.8°. Furthermore, the PEM coated WISPR biosensor can serve as highly sensitive biosensor, in which the biotin-streptavidin is used as bioconjugate pair. After deposition of the PEM film of (biotin/PAH)(PSS/PAH)3, the modified WISPR biosensor is more sensitive to the low concentration(〈0.01 mg/mL) of streptavidin. And the sensing sensitivity can be further increased by one order of magnitude compared with that of the biotin/PAH coated WISPR biosensor. Thus, such low-cost, high-performance and efficient PEM-coated WISPR biosensors have great potentials in a diverse array of fields such as medical diagnostics, drug screening, food safety analysis, environmental monitoring, and homeland security. 展开更多
关键词 polyelectrolyte multilayer Sensing sensitivity BIOSENSOR Wavelength interrogated surface plasmon resonance
原文传递
3D porous acellular cartilage matrix scaffold with surface mediated sustainable release of TGF-β3 for cartilage engineering 被引量:1
7
作者 Yixing Huang Xingfang Yu +4 位作者 Linjie He Xin Liao Shuo Wang Zhiyong Qian Liyan Shen 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第7期1797-1800,共4页
Acellular tissue matrix scaffolds are much closer to tissue’s complex natural structure and biological characteristics,thus assess great advantages in cartilage engineering.We used rabbit costal cartilage to prepare ... Acellular tissue matrix scaffolds are much closer to tissue’s complex natural structure and biological characteristics,thus assess great advantages in cartilage engineering.We used rabbit costal cartilage to prepare acellular microfilaments and further 3D porous acellular cartilage scaffold via crosslinking.Poly(_L-lysine)/hyaluronic acid(PLL/HA)multilayer film was then built up onto the surface of the resulting porous scaffold.Furthermore,TGF-β3 was loaded into the PLL/HA multilayer film coated scaffold to obtain a 3D porous acellular cartilage scaffold with sustained releasing of TGF-β3 up to 60 days.The success of this project will provide a new way for the treatment of articular cartilage defects.Meanwhile,the anchoring and on-site sustained releasing of growth factors mediated by polyelectrolyte multilayered film can also provide a new method for improving the biocompatibility and the biofunctionality for other implanted biomaterials. 展开更多
关键词 Acellular cartilage matrix scaffold TGF-Β3 polyelectrolyte multilayer film Sustainable release
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部