Six aromatic polyesters were prepared for gas separation membranes, and their permeation properties for hydrogen, oxygen, nitrogen, carbon dioxide, and methane were measured at 30 degrees C and 1 atmosphere by low pre...Six aromatic polyesters were prepared for gas separation membranes, and their permeation properties for hydrogen, oxygen, nitrogen, carbon dioxide, and methane were measured at 30 degrees C and 1 atmosphere by low pressure manometric method. The correlation between the gas transport behavior and molecular structure of aromatic polyester membrane is discussed. These data are interpreted qualitatively in terms of the calculated packing density, gas-polymer interaction, concentration of aryl bromine on backbone, and effect of silane group on main chain of polymer.展开更多
The gas separation properties of free- standing film of polyaniline (PANI) for gas pairs of He/N2, H_2/N_2. CO_2/N_2 and CO_2/CH_4 at room temperature were measured as a function of the protonation state. Variation of...The gas separation properties of free- standing film of polyaniline (PANI) for gas pairs of He/N2, H_2/N_2. CO_2/N_2 and CO_2/CH_4 at room temperature were measured as a function of the protonation state. Variation of the gas permeabilities coefficient of PANI with an insulator to metal transition upon the protonation processes was observed, which might be due to a change in both gas solubility coefficient and diffusion coefficient with the protonation state.展开更多
SAPO-34 nanocrystals(inorganic filler) were incorporated in polyurethane membranes and the permeation properties of CO_2, CH_4,and N_2 gases were explored. In this regard, the synthesized PU-SAPO-34 mixed matrix membr...SAPO-34 nanocrystals(inorganic filler) were incorporated in polyurethane membranes and the permeation properties of CO_2, CH_4,and N_2 gases were explored. In this regard, the synthesized PU-SAPO-34 mixed matrix membranes(MMMs) were characterized via SEM, AFM, TGA, XRD and FTIR analyses. Gas permeation properties of PU-SAPO-34 MMMs with SAPO-34 contents of 5 wt%, 10 wt% and 20 wt% were investigated. The permeation results revealed that the presence of 20 wt% SAPO-34 resulted in 4.45%, 18.24% and 40.2% reductions in permeability of CO_2,CH_4,and N_2, respectively, as compared to the permeability of neat polyurethane membrane. Also,the findings showed that at the pressure of 1.2 MPa, the incorporation of 20 wt% SAPO-34 into the polyurethane membranes enhanced the selectivity of CO_2/CH_4 and CO_2/N_2, 14.43 and 37.46%, respectively. In this research, PU containing 20 wt% SAPO-34 showed the best separation performance. For the first time, polynomial regression(PR) as a simple yet accurate tool yielded a mathematical equation for the prediction of permeabilities with high accuracy(R^2>99%).展开更多
In this work, poly(amide acid) solution, the precursor of polyimide, was synthesized by the reaction of 4,4′-(hexafluoroisopropylidene)diphthalicanhydride and 2,2-bis[4-(4-aminophenoxy)phenyl]-hexafluoropropanane in ...In this work, poly(amide acid) solution, the precursor of polyimide, was synthesized by the reaction of 4,4′-(hexafluoroisopropylidene)diphthalicanhydride and 2,2-bis[4-(4-aminophenoxy)phenyl]-hexafluoropropanane in the solvent of N-methyl-2-pyrrolidone(NMP) and tetrahydrofuran(THF). Then, hollow fiber membranes for high flux gas separation were prepared by dry-jet wet spinning using the precursor solution of poly(amide acid) as the spinning dope and a subsequent imidization process. Silicone rubber was further coated outside the obtained hollow fiber membranes to repair the defects on the denser layer. The effects of internal, external coagulation bath ratios with air gap, and coating solution concentrations on the morphologies, structures, and separation performance of the membranes were studied. Results showed that the sponge-like support layer was formed when the content of NMP was increased from 50% to 90% in the internal coagulation bath. The outer surface of the membrane became denser when the water content in the external coagulation bath increased from 40% to 100%, and the separation coefficient of CO2/CH4 increased by 2 times. This value could reach up to 1.4 when the air gap was 6 cm. With tuning the mass fraction of silicone rubber as 5%, hollow fiber composite membranes with uniform coating layer and an improved separation coefficient of 5.4 could be obtained.展开更多
文摘Six aromatic polyesters were prepared for gas separation membranes, and their permeation properties for hydrogen, oxygen, nitrogen, carbon dioxide, and methane were measured at 30 degrees C and 1 atmosphere by low pressure manometric method. The correlation between the gas transport behavior and molecular structure of aromatic polyester membrane is discussed. These data are interpreted qualitatively in terms of the calculated packing density, gas-polymer interaction, concentration of aryl bromine on backbone, and effect of silane group on main chain of polymer.
文摘The gas separation properties of free- standing film of polyaniline (PANI) for gas pairs of He/N2, H_2/N_2. CO_2/N_2 and CO_2/CH_4 at room temperature were measured as a function of the protonation state. Variation of the gas permeabilities coefficient of PANI with an insulator to metal transition upon the protonation processes was observed, which might be due to a change in both gas solubility coefficient and diffusion coefficient with the protonation state.
基金Supported by the University of Kashan and the nano-organization(1393/1752)
文摘SAPO-34 nanocrystals(inorganic filler) were incorporated in polyurethane membranes and the permeation properties of CO_2, CH_4,and N_2 gases were explored. In this regard, the synthesized PU-SAPO-34 mixed matrix membranes(MMMs) were characterized via SEM, AFM, TGA, XRD and FTIR analyses. Gas permeation properties of PU-SAPO-34 MMMs with SAPO-34 contents of 5 wt%, 10 wt% and 20 wt% were investigated. The permeation results revealed that the presence of 20 wt% SAPO-34 resulted in 4.45%, 18.24% and 40.2% reductions in permeability of CO_2,CH_4,and N_2, respectively, as compared to the permeability of neat polyurethane membrane. Also,the findings showed that at the pressure of 1.2 MPa, the incorporation of 20 wt% SAPO-34 into the polyurethane membranes enhanced the selectivity of CO_2/CH_4 and CO_2/N_2, 14.43 and 37.46%, respectively. In this research, PU containing 20 wt% SAPO-34 showed the best separation performance. For the first time, polynomial regression(PR) as a simple yet accurate tool yielded a mathematical equation for the prediction of permeabilities with high accuracy(R^2>99%).
基金financially supported by the National Natural Science Foundation of China (No. 21774019)Program of Shanghai Academic Research Leader (No. 18XD1400100)+3 种基金Natural Science Foundation of Shanghai (No. 18ZR1400600)Fundamental Research Funds for the Central Universities (No. 2232017A-01)Shanghai Science and Technology Commission "Yangfan" Program (No. 17YF1400500)Shanghai Science and Technology Innovation Action Plan (No. 16JC1403600)
文摘In this work, poly(amide acid) solution, the precursor of polyimide, was synthesized by the reaction of 4,4′-(hexafluoroisopropylidene)diphthalicanhydride and 2,2-bis[4-(4-aminophenoxy)phenyl]-hexafluoropropanane in the solvent of N-methyl-2-pyrrolidone(NMP) and tetrahydrofuran(THF). Then, hollow fiber membranes for high flux gas separation were prepared by dry-jet wet spinning using the precursor solution of poly(amide acid) as the spinning dope and a subsequent imidization process. Silicone rubber was further coated outside the obtained hollow fiber membranes to repair the defects on the denser layer. The effects of internal, external coagulation bath ratios with air gap, and coating solution concentrations on the morphologies, structures, and separation performance of the membranes were studied. Results showed that the sponge-like support layer was formed when the content of NMP was increased from 50% to 90% in the internal coagulation bath. The outer surface of the membrane became denser when the water content in the external coagulation bath increased from 40% to 100%, and the separation coefficient of CO2/CH4 increased by 2 times. This value could reach up to 1.4 when the air gap was 6 cm. With tuning the mass fraction of silicone rubber as 5%, hollow fiber composite membranes with uniform coating layer and an improved separation coefficient of 5.4 could be obtained.