Energy storage devices can effectively balance the uncertain load and significantly reduce electricity costs in the community microgrids(C-MGs) integrated with renewable energy sources. Scheduling of energy storage is...Energy storage devices can effectively balance the uncertain load and significantly reduce electricity costs in the community microgrids(C-MGs) integrated with renewable energy sources. Scheduling of energy storage is a multi-stage decision problem in which the decisions must be guaranteed to be nonanticipative and multi-stage robust(all-scenario-feasible). To satisfy these two requirements, this paper proposes a method based on a necessary and sufficient feasibility condition of scheduling decisions under the polyhedral uncertainty set. Unlike the most popular affine decision rule(ADR) based multistage robust optimization(MSRO) method, the method proposed in this paper does not require the affine decision assumption, and the feasible regions(the set of all feasible solutions) are not reduced, nor is the solution quality affected. A simple illustrative example and real-scale scheduling cases demonstrate that the proposed method can find feasible solutions when the ADR-based MSRO fails, and that it finds better solutions when both methods succeed. Comprehensive case studies for a real system are performed and the results validate the effectiveness and efficiency of the proposed method.展开更多
This paper addresses the planning problem of residential micro combined heat and power (micro-CHP) systems (including micro-generation units, auxiliary boilers, and thermal storage tanks) considering the associated te...This paper addresses the planning problem of residential micro combined heat and power (micro-CHP) systems (including micro-generation units, auxiliary boilers, and thermal storage tanks) considering the associated technical and economic factors. Since the accurate values of the thermal and electrical loads of this system cannot be exactly predicted for the planning horizon, the thermal and electrical load uncertainties are modeled using a two-stage adaptive robust optimization method based on a polyhedral uncertainty set. A solution method, which is composed of column-and-constraint generation (C&CG) algorithm and block coordinate descent (BCD) method, is proposed to efficiently solve this adaptive robust optimization model. Numerical results from a practical case study show the effective performance of the proposed adaptive robust model for residential micro-CHP planning and its solution method.展开更多
基金supported in part by National Key R&D Program of China (No.2022YFA1004600)Science and Technology Project of State Grid Corporation of China (No.5400-202199524A-0-5-ZN)National Natural Science Foundation of China (No.11991023)。
文摘Energy storage devices can effectively balance the uncertain load and significantly reduce electricity costs in the community microgrids(C-MGs) integrated with renewable energy sources. Scheduling of energy storage is a multi-stage decision problem in which the decisions must be guaranteed to be nonanticipative and multi-stage robust(all-scenario-feasible). To satisfy these two requirements, this paper proposes a method based on a necessary and sufficient feasibility condition of scheduling decisions under the polyhedral uncertainty set. Unlike the most popular affine decision rule(ADR) based multistage robust optimization(MSRO) method, the method proposed in this paper does not require the affine decision assumption, and the feasible regions(the set of all feasible solutions) are not reduced, nor is the solution quality affected. A simple illustrative example and real-scale scheduling cases demonstrate that the proposed method can find feasible solutions when the ADR-based MSRO fails, and that it finds better solutions when both methods succeed. Comprehensive case studies for a real system are performed and the results validate the effectiveness and efficiency of the proposed method.
文摘This paper addresses the planning problem of residential micro combined heat and power (micro-CHP) systems (including micro-generation units, auxiliary boilers, and thermal storage tanks) considering the associated technical and economic factors. Since the accurate values of the thermal and electrical loads of this system cannot be exactly predicted for the planning horizon, the thermal and electrical load uncertainties are modeled using a two-stage adaptive robust optimization method based on a polyhedral uncertainty set. A solution method, which is composed of column-and-constraint generation (C&CG) algorithm and block coordinate descent (BCD) method, is proposed to efficiently solve this adaptive robust optimization model. Numerical results from a practical case study show the effective performance of the proposed adaptive robust model for residential micro-CHP planning and its solution method.