期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Superconductivity above 70 K observed in lutetium polyhydrides 被引量:2
1
作者 Zhiwen Li Xin He +20 位作者 Changling Zhang Ke Lu Baosen Min Jun Zhang Sijia Zhang Jianfa Zhao Luchuan Shi Yi Peng Shaomin Feng Zheng Deng Jing Song Qingqing Liu Xiancheng Wang Richeng Yu Luhong Wang Yingzhe Li Jay D.Bass Vitali Prakapenka Stella Chariton Haozhe Liu Changqing Jin 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2023年第6期95-100,共6页
The binary polyhydrides of heavy rare earth lutetium that shares a similar valence electron configuration to lanthanum have been experimentally discovered to be superconductive.The lutetium polyhydrides were successfu... The binary polyhydrides of heavy rare earth lutetium that shares a similar valence electron configuration to lanthanum have been experimentally discovered to be superconductive.The lutetium polyhydrides were successfully synthesized at high pressure and high temperature conditions using a diamond anvil cell in combinations with the in-situ high pressure laser heating technique.The resistance measurements as a function of temperature were performed at the same pressure of synthesis in order to study the transitions of superconductivity(SC).The superconducting transition with a maximum onset temperature(Tc)71 K was observed at pressure of 218 GPa in the experiments.The Tcdecreased to 65 K when pressure was at 181 GPa.From the evolution of SC at applied magnetic fields,the upper critical field at zero temperatureμ0Hc2(0)was obtained to be~36 T.The in-situ high pressure X-ray diffraction experiments imply that the high TcSC should arise from the Lu4H23phase with Pm3n symmetry that forms a new type of hydrogen cage framework different from those reported for previous light rare earth polyhydride superconductors. 展开更多
关键词 lutetium polyhydrides superconductors at high pressures high pressure synthesis
原文传递
Prediction of superionic state in LiH_(2) at conditions enroute to nuclear fusion
2
作者 李福德 王豪 +1 位作者 李津龙 耿华运 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期566-571,共6页
Hydrogen and lithium,along with their compounds,are crucial materials for nuclear fusion research.High-pressure studies have revealed intricate structural transitions in all these materials.However,research on lithium... Hydrogen and lithium,along with their compounds,are crucial materials for nuclear fusion research.High-pressure studies have revealed intricate structural transitions in all these materials.However,research on lithium hydrides beyond LiH has mostly focused on the low-temperature regime.Here,we use density functional theory and ab initio molecular dynamics simulations to investigate the behavior of LiH_(2),a hydrogen-rich compound,near its melting point.Our study is particularly relevant to the low-pressure region of the compression pathway of lithium hydrides toward fusion.We discovered a premelting superionic phase transition in LiH_(2)that has significant implications for its mass transportation,elastic properties,and sound velocity.The theoretical boundary for the superionic transition and melting temperature was then determined.In contrast,we also found that the primary compound of lithium hydrides,LiH,does not exhibit a superionic transition.These findings have important implications for optimizing the compression path to achieve the ignition condition in inertial confinement fusion research,especially when lithium tritium-deuteride(LiTD)is used as the fuel. 展开更多
关键词 lithium polyhydrides high pressure and high temperature superionic state phase transition
下载PDF
Possible Evolutionary Models in the Initially Hydride Earth Theory
3
作者 Kudryavtsev Pavel 《International Journal of Geosciences》 CAS 2023年第5期377-426,共50页
A modern view of the properties of chemical elements has confirmed the theory of the hot origin of the Earth. The next step in developing this theory was the hypothesis of the initial hydride Earth. In this work, we a... A modern view of the properties of chemical elements has confirmed the theory of the hot origin of the Earth. The next step in developing this theory was the hypothesis of the initial hydride Earth. In this work, we attempted to find additional evidence for this hypothesis and show additional effects that flow from it. The effect of the physical properties of atoms and ions on their behavior during the formation of the Earth was studied. The maximum contribution to the distribution of elements was made by those elements whose content in the original protoplanets of the disk was the maximum. Correlation dependence is obtained, which allows one to calculate the distribution of elements in the protoplanetary disk. It was shown that hydrogen was the main element in the proto substance located in the zone of the Earth’s formation. In this case, various chemical compounds formed, most represented by hydrogen compounds—hydrides. Since the pressure inside the Earth is 375 GPa, this factor forces the chemical compounds to adopt stoichiometry and structure that would not be available in atmospheric conditions. It is shown that many chemical elements at high pressure in a hydrogen medium form simple hydrides and super hydrides—polyhydrides with high hydrogen content. Pressure leads to a higher density of matter inside the planet. Given the possibility of forming polyhydrides, there is the possibility of binding the initially available hydrogen in an amount that can reach 49.3 mole%. Young Earth could contain about 10.7 mass% of hydrogen in hydrides, polyhydrides, and adsorbed form is almost twice higher than previous estimates. This fact additionally confirms the theory of the original hydride Earth. In hydrides, the occurrence of the phenomenon of superconductivity was discovered. Polyhydrides were shown as potential superconductors with a high critical temperature above 200 K. We, based on these data, hypothesized the presence of superconducting properties in the Earth’s core, which explains the presence of a magnetic field in the Earth, as well as the unevenness and instability of this field and the possibility of migration of the Earth’s poles. The fact that the Earth has a hydroid core causes its change in time due to the instability of hydrides. Arranged several possible models of the destruction of the Earth’s core. The calculations showed that both models give close results. These results give predictions that can be measured. The proposed models also made it possible to estimate the initial size of the Earth. Possible ways of further testing the hypothesis of the initial hydride Earth is shown. 展开更多
关键词 Theory of the Hot Origin of the Earth Magnetic Separation of Elements Atom Ionization Energy Hydrides polyhydrides Earth Expansion Superconductivity of the Earth’s Core
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部