Low-k and high aspect ratio blind through-silicon-vias (TSVs) to be applied in "via-last/backside via" 3-D integration paradigm were fabricated with polyimide dielectric liners formed by vacuum-assisted spin coati...Low-k and high aspect ratio blind through-silicon-vias (TSVs) to be applied in "via-last/backside via" 3-D integration paradigm were fabricated with polyimide dielectric liners formed by vacuum-assisted spin coating technique. MIS trench capacitors with diameter of-6 μm and depth of-54 μm were successfully fabricated with polyimide insulator step coverage better than 30%. C-V characteristics and leakage current properties of the MIS trench capacitor were evaluated under thermal treat- ment. Experimental results show that, the minimum capacitance density is around 4.82 nF/cm2, and the leakage current density after 30 cycles of thermal chock tests becomes stable and it is around 30 nA/cm2 under bias voltage of 20 V. It also shows that, the polyimide dielectric liner is with an excellent capability in constraining copper ion diffusion and mobile charges even un- der test temperature as high as 125℃. Finite element analysis results show that TSVs with polyimide dielectric liner are with lower risks in SiO2 interlayer dielectric (ILD) fracture and interfacial delamination along dielectric-silicon interface, thus, higher thermo-mechanical reliability can be expected.展开更多
以均苯四甲酸二酐、4,4'-二氨基二苯醚、3,3'-二氨基二苯醚为原料,以N,N-二甲基乙酰胺为溶剂,制得聚酰胺酸(PAA)纺丝液,采取干法纺丝制得PAA初生纤维,将PAA初生纤维经过300~380℃的热处理后,得到聚酰亚胺(PI)初生纤维,在400℃下...以均苯四甲酸二酐、4,4'-二氨基二苯醚、3,3'-二氨基二苯醚为原料,以N,N-二甲基乙酰胺为溶剂,制得聚酰胺酸(PAA)纺丝液,采取干法纺丝制得PAA初生纤维,将PAA初生纤维经过300~380℃的热处理后,得到聚酰亚胺(PI)初生纤维,在400℃下对PI初生纤维进行热拉伸,最终得到PI纤维,研究了热处理温度、热拉伸倍数等对PI纤维的结构与性能的影响,比较了PI纤维与P84纤维和芳纶1313的性能。结果表明:在300~380℃的热处理温度下,随着温度升高,PI纤维的力学性能降低,最佳热处理温度为300℃时制得的PI初生纤维于400℃下进行热拉伸3.0倍,所得PI纤维的断裂强度为5.8 c N/dtex,初始模量为69.4c N/dtex,其力学性能优于P84纤维及芳纶1313;PI纤维在空气中失重5%和10%的温度分别为560,570℃,其起始分解温度高于P84纤维和芳纶1313,热性能更好;PI纤维经高温热拉伸,纤维内部分子链沿纤维轴向高度取向,表现出典型的取向诱导结晶效应。展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.61404008&61574016)"111"Project of China(Grant No.B14010)
文摘Low-k and high aspect ratio blind through-silicon-vias (TSVs) to be applied in "via-last/backside via" 3-D integration paradigm were fabricated with polyimide dielectric liners formed by vacuum-assisted spin coating technique. MIS trench capacitors with diameter of-6 μm and depth of-54 μm were successfully fabricated with polyimide insulator step coverage better than 30%. C-V characteristics and leakage current properties of the MIS trench capacitor were evaluated under thermal treat- ment. Experimental results show that, the minimum capacitance density is around 4.82 nF/cm2, and the leakage current density after 30 cycles of thermal chock tests becomes stable and it is around 30 nA/cm2 under bias voltage of 20 V. It also shows that, the polyimide dielectric liner is with an excellent capability in constraining copper ion diffusion and mobile charges even un- der test temperature as high as 125℃. Finite element analysis results show that TSVs with polyimide dielectric liner are with lower risks in SiO2 interlayer dielectric (ILD) fracture and interfacial delamination along dielectric-silicon interface, thus, higher thermo-mechanical reliability can be expected.
文摘以均苯四甲酸二酐、4,4'-二氨基二苯醚、3,3'-二氨基二苯醚为原料,以N,N-二甲基乙酰胺为溶剂,制得聚酰胺酸(PAA)纺丝液,采取干法纺丝制得PAA初生纤维,将PAA初生纤维经过300~380℃的热处理后,得到聚酰亚胺(PI)初生纤维,在400℃下对PI初生纤维进行热拉伸,最终得到PI纤维,研究了热处理温度、热拉伸倍数等对PI纤维的结构与性能的影响,比较了PI纤维与P84纤维和芳纶1313的性能。结果表明:在300~380℃的热处理温度下,随着温度升高,PI纤维的力学性能降低,最佳热处理温度为300℃时制得的PI初生纤维于400℃下进行热拉伸3.0倍,所得PI纤维的断裂强度为5.8 c N/dtex,初始模量为69.4c N/dtex,其力学性能优于P84纤维及芳纶1313;PI纤维在空气中失重5%和10%的温度分别为560,570℃,其起始分解温度高于P84纤维和芳纶1313,热性能更好;PI纤维经高温热拉伸,纤维内部分子链沿纤维轴向高度取向,表现出典型的取向诱导结晶效应。